Suppr超能文献

乳酸及其他短链单羧酸在酿酒酵母中的转运

Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.

作者信息

Cássio F, Leão C, van Uden N

出版信息

Appl Environ Microbiol. 1987 Mar;53(3):509-13. doi: 10.1128/aem.53.3.509-513.1987.

Abstract

Saccharomyces cerevisiae IGC4072 grown in lactic acid medium transported lactate by an accumulative electroneutral proton-lactate symport with a proton-lactate stoichiometry of 1:1. The accumulation ratio measured with propionate increased with decreasing pH from ca. 24-fold at pH 6.0 to ca. 1,400-fold at pH 3.0. The symport accepted the following monocarboxylates (Km values at 25 degrees C and pH 5.5): D-lactate (0.13 mM), L-lactate (0.13 mM), pyruvate (0.34 mM), propionate (0.09 mM), and acetate (0.05 mM), whereas apparently a different proton symport accepted formate (0.13 mM). The lactate system was inducible and was subject to glucose repression. Undissociated lactic acid entered the cells by simple diffusion. The permeability of the plasma membrane for undissociated lactic acid increased exponentially with pH, and the diffusion constant increased 40-fold when the pH was increased from 3.0 to 6.0.

摘要

在乳酸培养基中生长的酿酒酵母IGC4072通过一种累积性的电中性质子 - 乳酸同向转运体转运乳酸,质子与乳酸的化学计量比为1:1。用丙酸盐测定的累积率随着pH值降低而增加,从pH 6.0时约24倍增加到pH 3.0时约1400倍。该同向转运体可转运以下单羧酸盐(25℃和pH 5.5时的Km值):D - 乳酸(0.13 mM)、L - 乳酸(0.13 mM)、丙酮酸(0.34 mM)、丙酸盐(0.09 mM)和乙酸盐(0.05 mM),而显然一种不同的质子同向转运体可转运甲酸盐(0.13 mM)。乳酸转运系统是可诱导的,且受葡萄糖阻遏。未解离的乳酸通过简单扩散进入细胞。质膜对未解离乳酸的通透性随pH呈指数增加,当pH从3.0增加到6.0时,扩散常数增加40倍。

相似文献

1
Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.
Appl Environ Microbiol. 1987 Mar;53(3):509-13. doi: 10.1128/aem.53.3.509-513.1987.
2
Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae.
Microbiology (Reading). 1996 Jun;142 ( Pt 6):1385-1390. doi: 10.1099/13500872-142-6-1385.
4
Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
Yeast. 1996 Sep 30;12(12):1263-72. doi: 10.1002/(SICI)1097-0061(19960930)12:12%3C1263::AID-YEA25%3E3.0.CO;2-A.
8
Lack of lactate-proton symport activity in pck1 mutants of Saccharomyces cerevisiae.
FEMS Microbiol Lett. 1995 May 15;128(3):279-82. doi: 10.1111/j.1574-6968.1995.tb07536.x.
10
Functional characteristics of pyruvate transport in Phycomyces blakesleeanus.
Fungal Genet Biol. 1998 Dec;25(3):204-15. doi: 10.1006/fgbi.1998.1100.

引用本文的文献

1
Short-Chain Fatty Acid Utilization in for Single-Cell Protein and Odd-Chain Fatty Acid Production.
Microorganisms. 2025 Jul 2;13(7):1558. doi: 10.3390/microorganisms13071558.
2
Engineering Flocculation for Improved Tolerance and Production of d-Lactic Acid in .
J Fungi (Basel). 2023 Mar 27;9(4):409. doi: 10.3390/jof9040409.
3
Autoregulation of H/lactate efflux prevents monocarboxylate transport (MCT) inhibitors from reducing glycolytic lactic acid production.
Br J Cancer. 2022 Oct;127(7):1365-1377. doi: 10.1038/s41416-022-01910-7. Epub 2022 Jul 15.
6
Uncovering Novel Plasma Membrane Carboxylate Transporters in the Yeast .
J Fungi (Basel). 2022 Jan 5;8(1):51. doi: 10.3390/jof8010051.
7
Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae.
FEMS Yeast Res. 2021 Sep 11;21(6). doi: 10.1093/femsyr/foab049.
8
Enhancing yeast growth with carboxylates under multiple nutrient limitations.
3 Biotech. 2021 Sep;11(9):409. doi: 10.1007/s13205-021-02955-w. Epub 2021 Aug 14.
9
Regulation of Cell Death Induced by Acetic Acid in Yeasts.
Front Cell Dev Biol. 2021 Jun 24;9:642375. doi: 10.3389/fcell.2021.642375. eCollection 2021.
10
Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in .
Microb Cell. 2021 Apr 14;8(6):111-130. doi: 10.15698/mic2021.06.751.

本文引用的文献

1
Reduction of Lactic Acid, Nonprotein Nitrogen, and Ash in Lactic Acid Whey by Candida ingens Culture.
Appl Environ Microbiol. 1978 Apr;35(4):771-6. doi: 10.1128/aem.35.4.771-776.1978.
2
Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
Biochim Biophys Acta. 1983 Aug 10;732(3):562-8. doi: 10.1016/0005-2736(83)90232-8.
3
Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 1984 Jul 11;774(1):43-8. doi: 10.1016/0005-2736(84)90272-4.
4
The electrochemical proton gradient of Saccharomyces. The role of potassium.
Eur J Biochem. 1982 Apr 1;123(2):447-53. doi: 10.1111/j.1432-1033.1982.tb19788.x.
7
Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis).
Biochem J. 1978 Apr 15;172(1):15-22. doi: 10.1042/bj1720015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验