Suppr超能文献

节律性肢体运动诱发的传入输入调节新型机器人体外培养脊髓神经元回路。

Afferent Input Induced by Rhythmic Limb Movement Modulates Spinal Neuronal Circuits in an Innovative Robotic In Vitro Preparation.

机构信息

Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, TS, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48, Udine, UD, Italy.

Institute of Neuroscience, Université catholique de Louvain, Av. Hippocrate 54, Brussels, Belgium.

出版信息

Neuroscience. 2018 Dec 1;394:44-59. doi: 10.1016/j.neuroscience.2018.10.016. Epub 2018 Oct 18.

Abstract

Locomotor patterns are mainly modulated by afferent feedback, but its actual contribution to spinal network activity during continuous passive limb training is still unexplored. To unveil this issue, we devised a robotic in vitro setup (Bipedal Induced Kinetic Exercise, BIKE) to induce passive pedaling, while simultaneously recording low-noise ventral and dorsal root (VR and DR) potentials in isolated neonatal rat spinal cords with hindlimbs attached. As a result, BIKE evoked rhythmic afferent volleys from DRs, reminiscent of pedaling speed. During BIKE, spontaneous VR activity remained unchanged, while a DR rhythmic component paired the pedaling pace. Moreover, BIKE onset rarely elicited brief episodes of fictive locomotion (FL) and, when trains of electrical pulses were simultaneously applied to a DR, it increased the amplitude, but not the number, of FL cycles. When BIKE was switched off after a 30-min training, the number of electrically induced FL oscillations was transitorily facilitated, without affecting VR reflexes or DR potentials. However, 90 min of BIKE no longer facilitated FL, but strongly depressed area of VR reflexes and stably increased antidromic DR discharges. Patch clamp recordings from single motoneurons after 90-min sessions indicated an increased frequency of both fast- and slow-decaying synaptic input to motoneurons. In conclusion, hindlimb rhythmic and alternated pedaling for different durations affects distinct dorsal and ventral spinal networks by modulating excitatory and inhibitory input to motoneurons. These results suggest defining new parameters for effective neurorehabilitation that better exploits spinal circuit activity.

摘要

运动模式主要受传入反馈调节,但它在连续被动肢体训练期间对脊髓网络活动的实际贡献仍未被探索。为了解决这个问题,我们设计了一个机器人体外装置(双足诱导运动实验,BIKE)来诱导被动踩踏,同时记录附着后肢的新生大鼠脊髓的低噪声腹根(VR)和背根(DR)电位。结果,BIKE 从 DR 中引发了有节奏的传入冲动,类似于踩踏速度。在 BIKE 期间,VR 自发活动保持不变,而 DR 节律成分与踩踏速度同步。此外,BIKE 很少引起短暂的虚构运动(FL)发作,当同时向 DR 施加电脉冲时,它会增加 FL 周期的幅度,但不会增加其数量。当 BIKE 在 30 分钟训练后关闭时,电诱导的 FL 振荡的数量暂时增加,而不会影响 VR 反射或 DR 电位。然而,90 分钟的 BIKE 不再促进 FL,而是强烈抑制 VR 反射的面积,并稳定增加逆行 DR 放电。90 分钟后对单个运动神经元进行膜片钳记录表明,快速和慢速衰减的突触输入到运动神经元的频率增加。总之,不同时间的后肢节律性和交替踩踏通过调节运动神经元的兴奋性和抑制性输入,对不同的背侧和腹侧脊髓网络产生影响。这些结果表明,为了更好地利用脊髓回路活动,需要定义新的有效神经康复参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验