Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
Cell Mol Neurobiol. 2023 Aug;43(6):2831-2856. doi: 10.1007/s10571-023-01321-z. Epub 2023 Feb 2.
Several spinal motor output and essential rhythmic behaviors are controlled by supraspinal structures, although their contribution to neuronal networks for respiration and locomotion at birth still requires better characterization. As preparations of isolated brainstem and spinal networks only focus on local circuitry, we introduced the in vitro central nervous system (CNS) from neonatal rodents to simultaneously record a stable respiratory rhythm from both cervical and lumbar ventral roots (VRs).Electrical pulses supplied to multiple sites of brainstem evoked distinct VR responses with staggered onset in the rostro-caudal direction. Stimulation of ventrolateral medulla (VLM) resulted in higher events from homolateral VRs. Stimulating a lumbar dorsal root (DR) elicited responses even from cervical VRs, albeit small and delayed, confirming functional ascending pathways. Oximetric assessments detected optimal oxygen levels on brainstem and cortical surfaces, and histological analysis of internal brain structures indicated preserved neuron viability without astrogliosis. Serial ablations showed precollicular decerebration reducing respiratory burst duration and frequency and diminishing the area of lumbar DR and VR potentials elicited by DR stimulation, while pontobulbar transection increased the frequency and duration of respiratory bursts. Keeping legs attached allows for expressing a respiratory rhythm during hindlimb stimulation. Trains of pulses evoked episodes of fictive locomotion (FL) when delivered to VLM or to a DR, the latter with a slightly better FL than in isolated cords.In summary, suprapontine centers regulate spontaneous respiratory rhythms, as well as electrically evoked reflexes and spinal network activity. The current approach contributes to clarifying modulatory brain influences on the brainstem and spinal microcircuits during development. Novel preparation of the entire isolated CNS from newborn rats unveils suprapontine modulation on brainstem and spinal networks. Preparation views (A) with and without legs attached (B). Successful fictive respiration occurs with fast dissection from P0-P2 rats (C). Decerebration speeds up respiratory rhythm (D) and reduces spinal reflexes derived from both ventral and dorsal lumbar roots (E).
虽然一些脊髓运动输出和基本节律行为受脑上级结构控制,但它们对出生时呼吸和运动神经元网络的贡献仍需要更好的描述。由于孤立脑和脊髓网络的准备工作仅集中在局部电路上,我们引入了新生啮齿动物的体外中枢神经系统(CNS),以同时记录颈和腰腹根(VR)的稳定呼吸节律。电脉冲刺激脑桥上多个部位,引起 VR 反应以头尾方向交错出现。刺激腹外侧延髓(VLM)导致同侧 VR 产生更高的事件。刺激腰背部根(DR)甚至可以从颈 VR 诱发反应,尽管幅度较小且延迟,证实了功能上行通路的存在。血氧计评估检测到脑桥和皮质表面的最佳氧水平,内部脑结构的组织学分析表明神经元存活而无星形胶质增生。连续消融显示,桥脑前切除减少呼吸爆发的持续时间和频率,并减少由 DR 刺激引起的腰 DR 和 VR 电位的面积,而桥脑延髓横断增加呼吸爆发的频率和持续时间。保持腿部连接可以在刺激后肢时表达呼吸节律。当将脉冲传递到 VLM 或 DR 时,脉冲串会引起虚拟运动(FL)发作,后者的 FL 比孤立的脊髓更有效。总之,脑上级中心调节自发性呼吸节律,以及电诱发反射和脊髓网络活动。目前的方法有助于阐明在发育过程中大脑对上脑和脊髓微电路的调节作用。来自新生大鼠的整个孤立 CNS 的新制备揭示了脑上级对上脑和脊髓网络的调制。带有(A)和不带(B)腿部的准备视图。成功进行快速剖离的新生大鼠可以进行虚拟呼吸(C)。桥脑前切除加速呼吸节律(D)并减少来自腰腹根的脊髓反射(E)。