Blodgett Karl N, Fischer Joshua L, Lee Jaeyeon, Choi Soo Hyuk, Zwier Timothy S
Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States.
Department of Chemistry , Yonsei University , Seoul 03722 , Korea.
J Phys Chem A. 2018 Nov 8;122(44):8762-8775. doi: 10.1021/acs.jpca.8b08418. Epub 2018 Oct 29.
The infrared and ultraviolet spectra of a series of capped asparagine-containing peptides, Ac-Asn-NHBn, Ac-Ala-Asn-NHBn, and Ac-Asn-Asn-NHBn, have been recorded under jet-cooled conditions in the gas phase in order to probe the influence of the Asn residue, with its -CH-C(═O)-NH side chain, on the local conformational preferences of a peptide backbone. The double-resonance methods of resonant ion-dip infrared (RIDIR) spectroscopy and infrared-ultraviolet hole-burning (IR-UV HB) spectroscopy were used to record single-conformation spectra in the infrared and ultraviolet, respectively, free from interference from other conformations present in the molecular beam. Ac-Asn-NHBn spreads its population over two conformations, both of which are stabilized by a pair of H-bonds that form a bridge between the Asn carboxamide group and the NH and C═O groups on the peptide backbone. In one the peptide backbone engages in a 7-membered H-bonded ring (labeled C7), thereby forming an inverse γ-turn, stabilized by a C6/C7 Asn bridge. In the other the Asn carboxamide group forms a C8/C7 H-bonded bridge with the carboxamide group facing in the opposite direction across an extended peptide backbone involving a C5 interaction. Both Ac-Ala-Asn-NHBn and Ac-Asn-Asn-NHBn are found exclusively in a single conformation in which the peptide backbone engages in a type I β-turn with its C10 H-bond. The Asn residue(s) stabilize this β-turn via C6 H-bond(s) between the carboxamide C═O group and the same residue's amide NH. These structures are closely analogous to the corresponding structures in Gln-containing peptides studied previously [Walsh, P. S. et al. PCCP 2016, 18, 11306-11322; Walsh, P. S. et al. Angew. Chem. Int. Ed. 2016, 55, 14618-14622], indicating that the Asn and Gln side chains can each configure so as to stabilize the same backbone conformations. Spectroscopic and computational evidence suggest that glutamine is more predisposed than asparagine to β-turn formation via unusually strong side-chain-backbone hydrogen-bond formation. Further spectral and structural similarities and differences due to the side-chain length difference of these similar amino acids are presented and discussed.
为了探究带有-CH-C(═O)-NH侧链的天冬酰胺(Asn)残基对肽主链局部构象偏好的影响,在气相喷射冷却条件下记录了一系列含有天冬酰胺的封端肽(Ac-Asn-NHBn、Ac-Ala-Asn-NHBn和Ac-Asn-Asn-NHBn)的红外光谱和紫外光谱。采用共振离子偶极红外(RIDIR)光谱和红外-紫外空穴燃烧(IR-UV HB)光谱的双共振方法,分别记录红外和紫外的单构象光谱,避免分子束中其他构象的干扰。Ac-Asn-NHBn的分子数分布在两种构象上,这两种构象均通过一对氢键得以稳定,这对氢键在天冬酰胺羧酰胺基团与肽主链上的NH和C═O基团之间形成了一个桥。在一种构象中,肽主链参与形成一个七元氢键环(标记为C7),从而形成一个反向γ-转角,由C6/C7天冬酰胺桥稳定。在另一种构象中,天冬酰胺羧酰胺基团通过一个涉及C5相互作用的延伸肽主链,与方向相反的羧酰胺基团形成一个C8/C7氢键桥。发现Ac-Ala-Asn-NHBn和Ac-Asn-Asn-NHBn均只存在于一种单一构象中,其中肽主链通过其C10氢键参与形成I型β-转角。天冬酰胺残基通过羧酰胺C═O基团与同一残基的酰胺NH之间的C6氢键来稳定这个β-转角。这些结构与先前研究的含谷氨酰胺(Gln)肽中的相应结构非常相似[Walsh, P. S.等人,《物理化学化学物理》,2016年,18卷,11306 - 11322页;Walsh, P. S.等人,《德国应用化学》,2016年,55卷, 14618 - 14622页],表明天冬酰胺和谷氨酰胺的侧链都可以通过构象来稳定相同的主链构象。光谱和计算证据表明,谷氨酰胺比天冬酰胺更倾向于通过异常强的侧链-主链氢键形成来形成β-转角。本文还展示并讨论了由于这些相似氨基酸侧链长度差异导致的进一步光谱和结构上的异同。