Bergmann Tobias G, Welzel Michael O, Jacob Christoph R
Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
Chem Sci. 2019 Dec 27;11(7):1862-1877. doi: 10.1039/c9sc05103a.
Molecular spectra calculated with quantum-chemical methods are subject to a number of uncertainties (, errors introduced by the computational methodology) that hamper the direct comparison of experiment and computation. Judging these uncertainties is crucial for drawing reliable conclusions from the interplay of experimental and theoretical spectroscopy, but largely relies on subjective judgment. Here, we explore the application of methods from uncertainty quantification to theoretical spectroscopy, with the ultimate goal of providing systematic error bars for calculated spectra. As a first target, we consider distortions of the underlying molecular structure as one important source of uncertainty. We show that by performing a principal component analysis, the most influential collective distortions can be identified, which allows for the construction of surrogate models that are amenable to a statistical analysis of the propagation of uncertainties in the molecular structure to uncertainties in the calculated spectrum. This is applied to the calculation of X-ray emission spectra of iron carbonyl complexes, of the electronic excitation spectrum of a coumarin dye, and of the infrared spectrum of alanine. We show that with our approach it becomes possible to obtain error bars for calculated spectra that account for uncertainties in the molecular structure. This is an important first step towards systematically quantifying other relevant sources of uncertainty in theoretical spectroscopy.
用量子化学方法计算的分子光谱存在许多不确定性(即计算方法引入的误差),这妨碍了实验与计算结果的直接比较。判断这些不确定性对于从实验光谱学和理论光谱学的相互作用中得出可靠结论至关重要,但很大程度上依赖于主观判断。在此,我们探索将不确定性量化方法应用于理论光谱学,最终目标是为计算光谱提供系统的误差范围。作为第一个目标,我们将基础分子结构的畸变视为不确定性的一个重要来源。我们表明,通过进行主成分分析,可以识别出最具影响力的集体畸变,这使得构建替代模型成为可能,该模型适用于对分子结构中的不确定性传播到计算光谱中的不确定性进行统计分析。这一方法被应用于羰基铁配合物的X射线发射光谱、香豆素染料的电子激发光谱以及丙氨酸的红外光谱的计算。我们表明,通过我们的方法,可以获得考虑分子结构不确定性的计算光谱误差范围。这是朝着系统量化理论光谱学中其他相关不确定性来源迈出的重要第一步。