Suppr超能文献

预测根治性膀胱切除术后围手术期和肿瘤学结局的半竞争风险模型。

Semi-competing risk model to predict perioperative and oncologic outcomes after radical cystectomy.

作者信息

Peak Taylor, Chapple Andrew, Coon Grayson, Hemal Ashok

机构信息

Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.

Statistics, Rice University Wiess School of Natural Sciences, Houston, TX, USA.

出版信息

Ther Adv Urol. 2018 Aug 29;10(11):317-326. doi: 10.1177/1756287218791412. eCollection 2018 Nov.

Abstract

BACKGROUND

To utilize a semi-competing risk model to predict perioperative and oncologic outcomes after radical cystectomy and to compare the findings with the univariate Cox regression model.

METHODS

We reviewed the Institutional Review Board approved database of radical cystectomy of 316 patients who had undergone robot-assisted radical cystectomy (RARC) or open radical cystectomy between 2006 and 2016. Demographic data, perioperative outcomes, complications, metastasis, and survival were analyzed. The Bayesian variable selection method was utilized to obtain models for each hazard function in the semi-competing risks.

RESULTS

Of 316 patients treated, 48% and 18% experienced any or major complication respectively within 30 days. Intracorporeal RARC was associated with decreased metastasis risk. Extracorporeal RARC was associated with marginally decreased risks of overall complications or major complications. Patients with advanced cancer had an increased risk of metastasis, death after metastasis and death after complication. Positive nodes were associated with an increased risk of death without overall or major complications and increased risk of death after metastasis occurs. When a serious complication was taken into account there was no significant difference in mortality, irrespective of disease stage.

CONCLUSIONS

A semi-competing risk model provides relatively more accurate information in comparison to Cox regression analysis in predicting risk factors for complications and metastasis in patients undergoing radical cystectomy.

摘要

背景

运用半竞争风险模型预测根治性膀胱切除术后的围手术期及肿瘤学结局,并将结果与单变量Cox回归模型进行比较。

方法

我们回顾了机构审查委员会批准的数据库,该数据库包含2006年至2016年间接受机器人辅助根治性膀胱切除术(RARC)或开放性根治性膀胱切除术的316例患者的根治性膀胱切除术数据。分析了人口统计学数据、围手术期结局、并发症、转移和生存情况。采用贝叶斯变量选择方法来获得半竞争风险中每个风险函数的模型。

结果

在接受治疗的316例患者中,分别有48%和18%在30天内出现任何并发症或严重并发症。体内RARC与转移风险降低相关。体外RARC与总体并发症或严重并发症风险略有降低相关。晚期癌症患者转移、转移后死亡和并发症后死亡的风险增加。阳性淋巴结与无总体或严重并发症的死亡风险增加以及转移发生后的死亡风险增加相关。当考虑严重并发症时,无论疾病分期如何,死亡率均无显著差异。

结论

与Cox回归分析相比,半竞争风险模型在预测根治性膀胱切除术患者并发症和转移的风险因素方面提供了相对更准确的信息。

相似文献

本文引用的文献

3
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验