Suppr超能文献

基于多任务残差全卷积网络的盆腔磁共振图像分割半监督学习

SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS.

作者信息

Feng Zishun, Nie Dong, Wang Li, Shen Dinggang

机构信息

Department of Automation, Tsinghua University.

Department of Radiology and BRIC, UNC-Chapel Hill.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:885-888. doi: 10.1109/ISBI.2018.8363713. Epub 2018 May 24.

Abstract

Accurate segmentation of pelvic organs from magnetic resonance (MR) images plays an important role in image-guided radiotherapy. However, it is a challenging task due to inconsistent organ appearances and large shape variations. Fully convolutional network (FCN) has recently achieved state-of-the-art performance in medical image segmentation, but it requires a large amount of labeled data for training, which is usually difficult to obtain in real situation. To address these challenges, we propose a deep learning based semi-supervised learning framework. Specifically, we first train an initial multi-task residual fully convolutional network (FCN) based on a limited number of labeled MRI data. Based on the initially trained FCN, those unlabeled new data can be automatically segmented and some reasonable segmentations (after manual/automatic checking) can be included into the training data to fine-tune the network. This step can be repeated to progressively improve the training of our network, until no reasonable segmentations of new data can be included. Experimental results demonstrate the effectiveness of our proposed progressive semi-supervised learning fashion as well as its advantage in terms of accuracy.

摘要

从磁共振(MR)图像中准确分割盆腔器官在图像引导放射治疗中起着重要作用。然而,由于器官外观不一致和形状变化较大,这是一项具有挑战性的任务。全卷积网络(FCN)最近在医学图像分割中取得了领先的性能,但它需要大量的标记数据进行训练,而在实际情况中通常很难获得这些数据。为了应对这些挑战,我们提出了一种基于深度学习的半监督学习框架。具体来说,我们首先基于有限数量的标记MRI数据训练一个初始的多任务残差全卷积网络(FCN)。基于最初训练的FCN,可以自动分割那些未标记的新数据,并且一些合理的分割结果(经过手动/自动检查)可以包含到训练数据中以微调网络。这一步骤可以重复进行,以逐步改进我们网络的训练,直到无法再包含新数据的合理分割结果为止。实验结果证明了我们提出的渐进式半监督学习方式的有效性及其在准确性方面的优势。

相似文献

1
SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:885-888. doi: 10.1109/ISBI.2018.8363713. Epub 2018 May 24.
2
Semi-supervised abdominal multi-organ segmentation by object-redrawing.
Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.
3
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.
4
Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
Comput Methods Programs Biomed. 2020 Jun;189:105328. doi: 10.1016/j.cmpb.2020.105328. Epub 2020 Jan 11.
6
STRAINet: Spatially Varying sTochastic Residual AdversarIal Networks for MRI Pelvic Organ Segmentation.
IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1552-1564. doi: 10.1109/TNNLS.2018.2870182. Epub 2018 Oct 9.
8
Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks.
IEEE Trans Med Imaging. 2018 Aug 13. doi: 10.1109/TMI.2018.2864958.
10
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.

引用本文的文献

1
BadCLM: Backdoor Attack in Clinical Language Models for Electronic Health Records.
AMIA Annu Symp Proc. 2025 May 22;2024:768-777. eCollection 2024.
2
Unsupervised denoising of photoacoustic images based on the Noise2Noise network.
Biomed Opt Express. 2024 Jul 2;15(8):4390-4405. doi: 10.1364/BOE.529253. eCollection 2024 Aug 1.
3
3D Observation of Pelvic Organs with Dynamic MRI Segmentation: A Bridge Toward Patient-Specific Models.
Int Urogynecol J. 2024 Jul;35(7):1389-1397. doi: 10.1007/s00192-024-05817-0. Epub 2024 May 27.
4
The role of artificial intelligence in radiotherapy clinical practice.
BJR Open. 2023 Oct 18;5(1):20230030. doi: 10.1259/bjro.20230030. eCollection 2023.
7
Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges.
Diagnostics (Basel). 2021 Oct 22;11(11):1964. doi: 10.3390/diagnostics11111964.
9
An introduction to deep learning in medical physics: advantages, potential, and challenges.
Phys Med Biol. 2020 Mar 3;65(5):05TR01. doi: 10.1088/1361-6560/ab6f51.
10
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.

本文引用的文献

1
FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2016;2016:1342-1345. doi: 10.1109/ISBI.2016.7493515.
2
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
3
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
IEEE Trans Med Imaging. 2016 Apr;35(4):1077-89. doi: 10.1109/TMI.2015.2508280. Epub 2015 Dec 11.
5
Tree-guided sparse coding for brain disease classification.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):239-47. doi: 10.1007/978-3-642-33454-2_30.
6
Prostate segmentation in MR images using discriminant boundary features.
IEEE Trans Biomed Eng. 2013 Feb;60(2):479-88. doi: 10.1109/TBME.2012.2228644. Epub 2012 Nov 21.
7
Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI.
Acad Radiol. 2011 Jun;18(6):745-54. doi: 10.1016/j.acra.2011.01.016.
8
Recursive erosion, dilation, opening, and closing transforms.
IEEE Trans Image Process. 1995;4(3):335-45. doi: 10.1109/83.366481.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验