Suppr超能文献

基于卷积网络的 MRI 危及器官自动分割在前列腺放射治疗中的临床应用。

Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy.

机构信息

Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands.

Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands.

出版信息

Radiat Oncol. 2020 May 11;15(1):104. doi: 10.1186/s13014-020-01528-0.

Abstract

BACKGROUND

Structure delineation is a necessary, yet time-consuming manual procedure in radiotherapy. Recently, convolutional neural networks have been proposed to speed-up and automatise this procedure, obtaining promising results. With the advent of magnetic resonance imaging (MRI)-guided radiotherapy, MR-based segmentation is becoming increasingly relevant. However, the majority of the studies investigated automatic contouring based on computed tomography (CT).

PURPOSE

In this study, we investigate the feasibility of clinical use of deep learning-based automatic OARs delineation on MRI.

MATERIALS AND METHODS

We included 150 patients diagnosed with prostate cancer who underwent MR-only radiotherapy. A three-dimensional (3D) T1-weighted dual spoiled gradient-recalled echo sequence was acquired with 3T MRI for the generation of the synthetic-CT. The first 48 patients were included in a feasibility study training two 3D convolutional networks called DeepMedic and dense V-net (dV-net) to segment bladder, rectum and femurs. A research version of an atlas-based software was considered for comparison. Dice similarity coefficient, 95% Hausdorff distances (HD), and mean distances were calculated against clinical delineations. For eight patients, an expert RTT scored the quality of the contouring for all the three methods. A choice among the three approaches was made, and the chosen approach was retrained on 97 patients and implemented for automatic use in the clinical workflow. For the successive 53 patients, Dice, HD and mean distances were calculated against the clinically used delineations.

RESULTS

DeepMedic, dV-net and the atlas-based software generated contours in 60 s, 4 s and 10-15 min, respectively. Performances were higher for both the networks compared to the atlas-based software. The qualitative analysis demonstrated that delineation from DeepMedic required fewer adaptations, followed by dV-net and the atlas-based software. DeepMedic was clinically implemented. After retraining DeepMedic and testing on the successive patients, the performances slightly improved.

CONCLUSION

High conformality for OARs delineation was achieved with two in-house trained networks, obtaining a significant speed-up of the delineation procedure. Comparison of different approaches has been performed leading to the succesful adoption of one of the neural networks, DeepMedic, in the clinical workflow. DeepMedic maintained in a clinical setting the accuracy obtained in the feasibility study.

摘要

背景

结构勾画是放射治疗中必要且耗时的手动过程。最近,卷积神经网络已被提出用于加速和自动化此过程,取得了有前景的结果。随着磁共振成像(MRI)引导放射治疗的出现,基于 MRI 的分割变得越来越重要。然而,大多数研究都是基于计算机断层扫描(CT)来调查自动勾画的。

目的

本研究旨在探讨基于深度学习的自动勾画器官自动勾画在 MRI 上的临床应用的可行性。

材料与方法

我们纳入了 150 例诊断为前列腺癌并接受 MRI 引导放射治疗的患者。使用 3T MRI 采集三维(3D)T1 加权双反转梯度回波序列,生成合成 CT。前 48 例患者纳入可行性研究,训练两个 3D 卷积网络,称为 DeepMedic 和密集 V 网络(dV-net),以分割膀胱、直肠和股骨。同时比较了一个研究版的基于图谱的软件。计算 Dice 相似系数、95%Hausdorff 距离(HD)和平均距离,与临床勾画进行比较。对于 8 例患者,一位专家 RTT 对所有三种方法的勾画质量进行评分。在三种方法中进行选择,选择的方法在 97 例患者中进行重新训练,并在临床工作流程中实现自动使用。对于随后的 53 例患者,计算与临床使用的勾画的 Dice、HD 和平均距离。

结果

DeepMedic、dV-net 和基于图谱的软件分别在 60s、4s 和 10-15min 生成轮廓。与基于图谱的软件相比,两个网络的性能都更高。定性分析表明,DeepMedic 勾画需要的调整更少,其次是 dV-net 和基于图谱的软件。DeepMedic 在临床上得到了应用。在对随后的患者进行重新训练和测试后,性能略有提高。

结论

使用两个内部训练的网络实现了 OAR 勾画的高适形性,显著加快了勾画过程。对不同方法进行了比较,最终成功将其中一个神经网络 DeepMedic 应用于临床工作流程。DeepMedic 在临床环境中保持了在可行性研究中获得的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4027/7216473/7a78c923f611/13014_2020_1528_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验