Suppr超能文献

噬菌体驱动的基因组结构变化促进巴尔通体垂直进化。

Prophage-Driven Genomic Structural Changes Promote Bartonella Vertical Evolution.

机构信息

Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel.

The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Genome Biol Evol. 2018 Nov 1;10(11):3089-3103. doi: 10.1093/gbe/evy236.

Abstract

Bartonella is a genetically diverse group of vector-borne bacteria. Over 40 species have been characterized to date, mainly from mammalian reservoirs and arthropod vectors. Rodent reservoirs harbor one of the largest Bartonella diversity described to date, and novel species and genetic variants are continuously identified from these hosts. Yet, it is still unknown if this significant genetic diversity stems from adaptation to different niches or from intrinsic high mutation rates. Here, we explored the vertical occurrence of spontaneous genomic alterations in 18 lines derived from two rodent-associated Bartonella elizabethae-like strains, evolved in nonselective agar plates under conditions mimicking their vector- and mammalian-associated temperatures, and the transmission cycles between them (i.e., 26 °C, 37 °C, and alterations between the two), using mutation accumulation experiments. After ∼1,000 generations, evolved genomes revealed few point mutations (average of one-point mutation per line), evidencing conserved single-nucleotide mutation rates. Interestingly, three large structural genomic changes (two large deletions and an inversion) were identified over all lines, associated with prophages and surface adhesin genes. Particularly, a prophage, deleted during constant propagation at 37 °C, was associated with an increased autonomous replication at 26 °C (the flea-associated temperature). Complementary molecular analyses of wild strains, isolated from desert rodents and their fleas, further supported the occurrence of structural genomic variations and prophage-associated deletions in nature. Our findings suggest that structural genomic changes represent an effective intrinsic mechanism to generate diversity in slow-growing bacteria and emphasize the role of prophages as promoters of diversity in nature.

摘要

巴尔通体是一组遗传多样性的载体传播细菌。迄今为止,已经鉴定出超过 40 种物种,主要来自哺乳动物宿主和节肢动物载体。啮齿动物宿主携带迄今为止描述的最大巴尔通体多样性之一,并且从这些宿主中不断鉴定出新的物种和遗传变异体。然而,目前尚不清楚这种显著的遗传多样性是源于对不同生态位的适应,还是源于内在的高突变率。在这里,我们通过突变积累实验,探索了从两个与啮齿动物相关的巴尔通体伊丽莎白菌样菌株衍生的 18 个系中自发基因组改变的垂直发生情况,这些菌株在模拟其载体和哺乳动物相关温度的非选择性琼脂平板中进化,以及它们之间的传播周期(即 26°C、37°C 和两者之间的变化)。在大约 1000 代之后,进化基因组显示出很少的点突变(每条线平均一个点突变),表明保守的单核苷酸突变率。有趣的是,在所有系中都鉴定出了三个大的结构基因组变化(两个大的缺失和一个倒位),与前噬菌体和表面黏附素基因有关。特别是,一个在 37°C 恒定繁殖期间缺失的前噬菌体,与 26°C(跳蚤相关温度)的自主复制增加有关。对从沙漠啮齿动物及其跳蚤中分离的野生菌株进行的补充分子分析进一步支持了结构基因组变异和前噬菌体相关缺失在自然界中的发生。我们的研究结果表明,结构基因组变化代表了在生长缓慢的细菌中产生多样性的有效内在机制,并强调了前噬菌体作为促进自然界多样性的因素的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3720/6257571/fc865a859779/evy236f1.jpg

相似文献

1
Prophage-Driven Genomic Structural Changes Promote Bartonella Vertical Evolution.
Genome Biol Evol. 2018 Nov 1;10(11):3089-3103. doi: 10.1093/gbe/evy236.
2
Origin and Evolution of the Bartonella Gene Transfer Agent.
Mol Biol Evol. 2018 Feb 1;35(2):451-464. doi: 10.1093/molbev/msx299.
3
Genomic structural plasticity of rodent-associated Bartonella in nature.
Mol Ecol. 2022 Jul;31(14):3784-3797. doi: 10.1111/mec.16547. Epub 2022 Jun 10.
4
Whole-genome sequence analysis and exploration of the zoonotic potential of a rat-borne Bartonella elizabethae.
Acta Trop. 2016 Mar;155:25-33. doi: 10.1016/j.actatropica.2015.11.019. Epub 2015 Dec 2.
5
Two novel (sub)species isolated from edible dormice (): hints of cultivation stress-induced genomic changes.
Front Microbiol. 2023 Nov 15;14:1289671. doi: 10.3389/fmicb.2023.1289671. eCollection 2023.
6
Bartonella species in invasive rats and indigenous rodents from Uganda.
Vector Borne Zoonotic Dis. 2014 Mar;14(3):182-8. doi: 10.1089/vbz.2013.1375. Epub 2014 Feb 27.
7
Association of Bartonella Species with Wild and Synanthropic Rodents in Different Brazilian Biomes.
Appl Environ Microbiol. 2016 Nov 21;82(24):7154-7164. doi: 10.1128/AEM.02447-16. Print 2016 Dec 15.
8
Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution.
Infect Genet Evol. 2011 Dec;11(8):1868-72. doi: 10.1016/j.meegid.2011.07.021. Epub 2011 Aug 12.

引用本文的文献

1
Pathogen contingency loci and the evolution of host specificity: Simple sequence repeats mediate Bartonella adaptation to a wild rodent host.
PLoS Pathog. 2024 Sep 30;20(9):e1012591. doi: 10.1371/journal.ppat.1012591. eCollection 2024 Sep.
2
Experimental Evolution in a Warming World: The Omics Era.
Mol Biol Evol. 2024 Aug 2;41(8). doi: 10.1093/molbev/msae148.
4
From genome structure to function: insights into structural variation in microbiology.
Curr Opin Microbiol. 2022 Oct;69:102192. doi: 10.1016/j.mib.2022.102192. Epub 2022 Aug 26.
5
Genomic structural plasticity of rodent-associated Bartonella in nature.
Mol Ecol. 2022 Jul;31(14):3784-3797. doi: 10.1111/mec.16547. Epub 2022 Jun 10.
6
A road map for in vivo evolution experiments with blood-borne parasitic microbes.
Mol Ecol Resour. 2022 Nov;22(8):2843-2859. doi: 10.1111/1755-0998.13649. Epub 2022 Jun 6.
7
vRhyme enables binning of viral genomes from metagenomes.
Nucleic Acids Res. 2022 Aug 12;50(14):e83. doi: 10.1093/nar/gkac341.
8
Deciphering Active Prophages from Metagenomes.
mSystems. 2022 Apr 26;7(2):e0008422. doi: 10.1128/msystems.00084-22. Epub 2022 Mar 24.
9
Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens.
Diagnostics (Basel). 2021 Jul 14;11(7):1259. doi: 10.3390/diagnostics11071259.
10
Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis.
Mol Biol Evol. 2021 Sep 27;38(10):4095-4115. doi: 10.1093/molbev/msab196.

本文引用的文献

1
Quantitative species-level ecology of reef fish larvae via metabarcoding.
Nat Ecol Evol. 2018 Feb;2(2):306-316. doi: 10.1038/s41559-017-0413-2. Epub 2017 Dec 18.
2
Origin and Evolution of the Bartonella Gene Transfer Agent.
Mol Biol Evol. 2018 Feb 1;35(2):451-464. doi: 10.1093/molbev/msx299.
3
Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen.
Cell Syst. 2017 Jun 28;4(6):611-621.e6. doi: 10.1016/j.cels.2017.05.011. Epub 2017 Jun 14.
4
Bartonella Species, an Emerging Cause of Blood-Culture-Negative Endocarditis.
Clin Microbiol Rev. 2017 Jul;30(3):709-746. doi: 10.1128/CMR.00013-17.
6
Canu: scalable and accurate long-read assembly via adaptive -mer weighting and repeat separation.
Genome Res. 2017 May;27(5):722-736. doi: 10.1101/gr.215087.116. Epub 2017 Mar 15.
7
Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen.
ISME J. 2017 May;11(5):1232-1244. doi: 10.1038/ismej.2016.201. Epub 2017 Feb 24.
8
Guidelines for the Isolation, Molecular Detection, and Characterization of Bartonella Species.
Vector Borne Zoonotic Dis. 2017 Jan;17(1):42-50. doi: 10.1089/vbz.2016.1956.
9
Bacterial Communities: Interactions to Scale.
Front Microbiol. 2016 Aug 8;7:1234. doi: 10.3389/fmicb.2016.01234. eCollection 2016.
10
Mutation-Driven Divergence and Convergence Indicate Adaptive Evolution of the Intracellular Human-Restricted Pathogen, Bartonella bacilliformis.
PLoS Negl Trop Dis. 2016 May 11;10(5):e0004712. doi: 10.1371/journal.pntd.0004712. eCollection 2016 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验