Postiglione Lorena, Napolitano Sara, Pedone Elisa, Rocca Daniel L, Aulicino Francesco, Santorelli Marco, Tumaini Barbara, Marucci Lucia, di Bernardo Diego
Telethon Institute of Genetics and Medicine , Via Campi Flegrei 34 , 80078 Pozzuoli (NA), Italy.
Department of Engineering Mathematics , University of Bristol , Bristol BS8 1UB , U.K.
ACS Synth Biol. 2018 Nov 16;7(11):2558-2565. doi: 10.1021/acssynbio.8b00235. Epub 2018 Oct 22.
Gene networks and signaling pathways display complex topologies and, as a result, complex nonlinear behaviors. Accumulating evidence shows that both static (concentration) and dynamical (rate-of-change) features of transcription factors, ligands and environmental stimuli control downstream processes and ultimately cellular functions. Currently, however, methods to generate stimuli with the desired features to probe cell response are still lacking. Here, combining tools from Control Engineering and Synthetic Biology (cybergenetics), we propose a simple and cost-effective microfluidics-based platform to precisely regulate gene expression and signaling pathway activity in mammalian cells by means of real-time feedback control. We show that this platform allows (i) to automatically regulate gene expression from inducible promoters in different cell types, including mouse embryonic stem cells; (ii) to precisely regulate the activity of the mTOR signaling pathway in single cells; (iii) to build a biohybrid oscillator in single embryonic stem cells by interfacing biological parts with virtual in silico counterparts. Ultimately, this platform can be used to probe gene networks and signaling pathways to understand how they process static and dynamic features of specific stimuli, as well as for the rapid prototyping of synthetic circuits for biotechnology and biomedical purposes.
基因网络和信号通路呈现出复杂的拓扑结构,因此具有复杂的非线性行为。越来越多的证据表明,转录因子、配体和环境刺激的静态(浓度)和动态(变化率)特征均控制着下游过程,并最终影响细胞功能。然而,目前仍缺乏能够产生具有所需特征的刺激来探测细胞反应的方法。在此,我们结合控制工程和合成生物学(网络遗传学)的工具,提出了一个简单且经济高效的基于微流控的平台,通过实时反馈控制精确调节哺乳动物细胞中的基因表达和信号通路活性。我们表明,该平台能够:(i)自动调节不同细胞类型(包括小鼠胚胎干细胞)中可诱导启动子的基因表达;(ii)精确调节单细胞中mTOR信号通路的活性;(iii)通过将生物部件与虚拟的计算机模拟对应物连接,在单个胚胎干细胞中构建生物杂交振荡器。最终,该平台可用于探测基因网络和信号通路,以了解它们如何处理特定刺激的静态和动态特征,以及用于生物技术和生物医学目的的合成电路的快速原型制作。