John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
Sci Rep. 2018 Oct 22;8(1):15595. doi: 10.1038/s41598-018-33885-y.
The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.
生物分子递送到细胞内依赖于细胞膜的穿孔,使外部分子通过扩散进入细胞。各种已建立的递送方法,包括电穿孔和病毒技术,分别存在低存活率或免疫毒性等缺点。一种基于光学的递送方法,使用激光脉冲来激发等离子体氮化钛(TiN)微金字塔,为克服这些缺点提供了机会。这种激光激发会产生局部纳米尺度的加热效应和气泡,从而在细胞膜上产生用于有效载荷进入的瞬时孔。TiN 是一种很有前途的等离子体材料,因为它具有高硬度和热稳定性。在这项研究中,构建并测试了两种 TiN 微金字塔阵列的设计。这些设计包括倒金字塔和正立金字塔结构,每个结构都涂有 50nm 厚的 TiN。模拟软件显示,激光照射下,倒金字塔和正立金字塔的设计分别达到 875°C 和 307°C 的温度。总的来说,实验结果表明,这些可重复使用的设计在将 calcein 染料递送到靶细胞时,最大细胞穿孔效率大于 80%,存活率大于 90%。总之,我们证明 TiN 微结构是未来用于细胞内递药和再生医学的生物医学设备的有力候选材料。