Suppr超能文献

利用大面积等离子体基纳秒激光激发实现细胞内递药。

Intracellular Delivery Using Nanosecond-Laser Excitation of Large-Area Plasmonic Substrates.

机构信息

Department of Physics, Ludwig Maximilian University of Munich , 80539 Munich, Germany.

ECE Paris Ecole d'Ingénieurs , 75015 Paris, France.

出版信息

ACS Nano. 2017 Apr 25;11(4):3671-3680. doi: 10.1021/acsnano.6b08162. Epub 2017 Mar 22.

Abstract

Efficiently delivering functional cargo to millions of cells on the time scale of minutes will revolutionize gene therapy, drug discovery, and high-throughput screening. Recent studies of intracellular delivery with thermoplasmonic structured surfaces show promising results but in most cases require time- or cost-intensive fabrication or lead to unreproducible surfaces. We designed and fabricated large-area (14 × 14 mm), photolithography-based, template-stripped plasmonic substrates that are nanosecond laser-activated to form transient pores in cells for cargo entry. We optimized fabrication to produce plasmonic structures that are ultrasmooth and precisely patterned over large areas. We used flow cytometry to characterize the delivery efficiency of cargos ranging in size from 0.6 to 2000 kDa to cells (up to 95% for the smallest molecule) and viability of cells (up to 98%). This technique offers a throughput of 50000 cells/min, which can be scaled up as necessary. This technique is also cost-effective as each large-area photolithography substrate can be used to deliver cargo to millions of cells, and switching to a nanosecond laser makes the setup cheaper and easier to use. The approach we present offers additional desirable features: spatial selectivity, reproducibility, minimal residual fragments, and cost-effective fabrication. This research supports the development of safer genetic and viral disease therapies as well as research tools for fundamental biological research that rely on effectively delivering molecules to millions of living cells.

摘要

高效地在数分钟的时间尺度内向数百万个细胞递送功能性货物,将彻底改变基因治疗、药物发现和高通量筛选。最近使用热等离子体结构化表面进行细胞内递送的研究显示出了很有前景的结果,但在大多数情况下,需要耗费时间和资金进行复杂的制造,或者导致重复性差的表面。我们设计并制造了大面积(14×14 毫米)、基于光刻的、模板剥离的等离子体基底,该基底可以通过纳秒激光激活,在细胞中形成用于货物进入的瞬态孔。我们优化了制造工艺,以生产出超光滑且大面积精确图案化的等离子体结构。我们使用流式细胞术来表征尺寸范围从 0.6 到 2000 kDa 的货物向细胞(对于最小分子可达 95%)和细胞活力(可达 98%)的递送效率。该技术的通量可达 50000 个细胞/分钟,并且可以根据需要进行扩展。该技术还具有成本效益,因为每个大面积光刻基底都可以用于向数百万个细胞递送货物,并且切换到纳秒激光可以使设备更便宜且更易于使用。我们提出的方法具有其他理想的特性:空间选择性、重复性、最小残留碎片和具有成本效益的制造。这项研究支持开发更安全的基因和病毒疾病疗法,以及依赖于有效向数百万个活细胞递送分子的基础生物学研究工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验