Suppr超能文献

通过高频起搏使附着于障碍物的螺旋波解缠的数学方法。

Mathematical approach to unpinning of spiral waves anchored to an obstacle with high-frequency pacing.

作者信息

Kitahata Hiroyuki, Tanaka Masanobu

机构信息

Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.

Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

出版信息

Biophys Physicobiol. 2018 Sep 12;15:196-203. doi: 10.2142/biophysico.15.0_196. eCollection 2018.

Abstract

Spiral waves are observed in wide variety of reaction-diffusion systems. Those observed in cardiac tissues are important since they are related to serious disease that threatens human lives, such as atrial or ventricular fibrillation. We consider the unpinning of spiral waves anchored to a circular obstacle on excitable media using high-frequency pacing. Here, we consider two types of the obstacle; , that without any diffusive interaction with the environment, and that with diffusive interaction. We found that the threshold frequency for success in unpinning is lower for the obstacle with diffusive interaction than for the one without it. We discuss the threshold frequency based on the angular velocity of a chemical wave anchoring the obstacle.

摘要

在各种各样的反应扩散系统中都观察到了螺旋波。在心脏组织中观察到的螺旋波很重要,因为它们与威胁人类生命的严重疾病有关,如心房颤动或心室颤动。我们考虑使用高频起搏使附着在可兴奋介质上圆形障碍物上的螺旋波解缠。在这里,我们考虑两种类型的障碍物:一种是与环境没有任何扩散相互作用的,另一种是具有扩散相互作用的。我们发现,具有扩散相互作用的障碍物解缠成功的阈值频率比没有扩散相互作用的障碍物要低。我们基于固定障碍物的化学波的角速度来讨论阈值频率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验