J Adhes Dent. 2018;20(5):417-424. doi: 10.3290/j.jad.a41308.
The present study investigated the creep of adhesive resin under constant loading at the orthodontic bracket/enamel interface with an orthodontic bracket-tooth model (shear creep) and three-point bending test (bending creep).
For the bracket-tooth model, sixty premolars were assigned to 4 groups (n = 15). Orthodontic brackets were bonded onto the enamel surface using four different bonding agents: conventional, homogeneous Transbond XT orthodontic composite (group 1/TBC); Transbond XT composite reinforced with photopolymerized glass-fiber-reinforced composite (FRC with bidirectional fibers) (group 2/TBE); Transbond XT reinforced with FRC of vertically oriented unidirectional fibers (group 3/TBV); and Transbond XT reinforced with FRC of horizontally oriented fibers (group 4/TBH). Load was applied at the bracket/tooth interface and from the bracket wire slot. In the three-point bending test, the creep and recovery of the rectangular interface materials were tested by a dynamic mechanical analyzer. The data obtained were statistically analyzed with ANOVA and a post-hoc test using SPSS v20 statistical software.
The groups exhibited significant differences in strain % and time for bracket deflection at the interface (p < 0.05). The interface loading with unidirectional fibers (groups TBV and TBH) were statistically significantly different compared to the interface with bidirectional fibers and control group (groups TBE and TBC). The three-point test showed the least creep compliance (ie, creep deformation occurring at each time point [J]) with group TBC, followed by groups TBV and TBE. Group TBC showed the highest nanohardness and elastic modulus; the lowest values were seen in group TBE, reflecting differences in polymer matrix composition.
The creep and time for debonding the bracket increased with incorporation of glass fibers at the interface between bracket and enamel.
本研究通过正畸托槽-牙模型(剪切蠕变)和三点弯曲试验(弯曲蠕变),研究了在正畸托槽-釉质界面恒定载荷下的粘结树脂蠕变。
对于托槽-牙模型,将 60 颗前磨牙分为 4 组(n = 15)。使用四种不同的粘结剂将正畸托槽粘结到釉质表面:传统粘结剂、均质 Transbond XT 正畸复合材料(第 1 组/TBC);用光固化玻璃纤维增强复合材料增强的 Transbond XT 复合材料(双向纤维 FRC)(第 2 组/TBE);用垂直定向单向纤维增强的 Transbond XT 复合材料(第 3 组/TBV);以及用水平定向纤维增强的 Transbond XT 复合材料(第 4 组/TBH)。在托槽/牙界面和托槽丝槽处施加负载。在三点弯曲试验中,通过动态机械分析仪测试矩形界面材料的蠕变和恢复。使用 SPSS v20 统计软件的方差分析和事后检验对获得的数据进行统计分析。
各组在界面处托槽变形的应变%和时间上均有显著差异(p < 0.05)。与双向纤维和对照组(第 2 组和第 1 组)相比,界面具有单向纤维(第 3 组和第 4 组)的组在支架偏转方面的界面负载具有统计学显著差异。三点测试显示,每组的蠕变柔量(即每个时间点发生的蠕变变形[J])最小,其次是第 3 组和第 2 组。第 1 组的纳米硬度和弹性模量最高;第 2 组的最低,反映了聚合物基质组成的差异。
随着玻璃纤维在托槽和釉质界面的加入,托槽的蠕变和脱粘时间增加。