Suppr超能文献

使用 DNA 折纸结构测量单链 DNA 的构象和持久长度。

Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.

机构信息

Physics Department and Institute for Nanotechnology , Bar Ilan University , Ramat Gan 5290002 , Israel.

出版信息

Nano Lett. 2018 Nov 14;18(11):6703-6709. doi: 10.1021/acs.nanolett.8b02093. Epub 2018 Oct 29.

Abstract

Measuring the mechanical properties of single-stranded DNA (ssDNA) is a challenge that has been addressed by different methods lately. The short persistence length, fragile structure, and the appearance of stem loops complicate the measurement, and this leads to a large variability in the measured values. Here we describe an innovative method based on DNA origami for studying the biophysical properties of ssDNA. By synthesizing a DNA origami structure that consists of two rigid rods with an ssDNA segment between them, we developed a method to characterize the effective persistence length of a random-sequence ssDNA while allowing the formation of stem loops. We imaged the structure with an atomic force microscope (AFM); the rigid rods provide a means for the exact identification of the ssDNA ends. This leads to an accurate determination of the end-to-end distance of each ssDNA segment, and by fitting the measured distribution to the ideal chain polymer model we measured an effective persistence length of 1.98 ± 0.72 nm. This method enables one to measure short or long strands of ssDNA, and it can cope with the formation of stem loops that are often formed along ssDNA. We envision that this method can be used for measuring stem loops for determining the effect of repetitive nucleotide sequences and environmental conditions on the mechanical properties of ssDNA and the effect of interacting proteins with ssDNA. We further noted that the method can be extended to nanoprobes for measuring the interactions of specific DNA sequences, because the DNA origami rods (or similar structures) can hold multiple fluorescent probes that can be easily detected.

摘要

测量单链 DNA(ssDNA)的机械性能是一个挑战,最近已经有不同的方法来解决这个问题。短的持久长度、脆弱的结构以及茎环的出现使测量变得复杂,这导致测量值的很大变化。在这里,我们描述了一种基于 DNA 折纸的创新方法,用于研究 ssDNA 的生物物理特性。通过合成一种由两个刚性棒组成的 DNA 折纸结构,每个刚性棒之间有一个 ssDNA 片段,我们开发了一种方法来表征随机序列 ssDNA 的有效持久长度,同时允许形成茎环。我们使用原子力显微镜(AFM)对结构进行成像;刚性棒为准确识别 ssDNA 末端提供了一种手段。这导致每个 ssDNA 片段的末端到末端距离的准确确定,并且通过将测量的分布拟合到理想的链聚合物模型,我们测量到有效持久长度为 1.98 ± 0.72nm。这种方法可以测量短或长的 ssDNA 链,并且可以应对经常沿着 ssDNA 形成的茎环的形成。我们设想这种方法可用于测量茎环,以确定重复核苷酸序列和环境条件对 ssDNA 机械性能以及与 ssDNA 相互作用的蛋白质的影响。我们还注意到,该方法可以扩展到用于测量特定 DNA 序列相互作用的纳米探针,因为 DNA 折纸棒(或类似结构)可以固定多个荧光探针,这些探针可以很容易地被检测到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验