Ramani Namrata, Hwang Jeongmin, Anderson Alex J, Delgado Jennifer, Hernández-López Laura, Figg C Adrian, Winegar Peter H, Mirkin Chad A
Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2025 May 21;147(20):17293-17302. doi: 10.1021/jacs.5c03523. Epub 2025 May 9.
Biomacromolecules can serve as molecularly precise building blocks for hydrogel materials, dictating material properties that depend on the chemical identity and interactions of the individual components. Herein, we introduce biomolecular hydrogels where ligand-functionalized DNA sequences form the hydrogel backbone and multivalent protein-ligand interactions form supramolecular cross-links. In these hydrogels, we can independently leverage the programmable rigidity of DNA (i.e., single-stranded vs double-stranded DNA) and defined protein-ligand binding affinities spanning >10 orders of magnitude to modulate the gel stiffness, stress relaxation, and shear thinning. We learn that (1) double-stranded networks have stiffness values up to 3 orders of magnitude greater than single-stranded networks and exhibit thermoresponsiveness and (2) the protein-ligand binding affinities and dissociation rate constants determine the network topologies and stress relaxation rates of the hydrogels. Finally, the hydrogels exhibit cytocompatibility and cell-type-specific degradation, where cells can migrate through the gels via interactions between the gels and their ligand-binding receptors. Together, this work demonstrates that varying the local chemical interactions of the hydrogel backbone and the supramolecular binding affinity of dynamic cross-links leads to cytocompatible hydrogels with tunable viscoelastic properties for applications in drug delivery and tissue engineering.
生物大分子可作为水凝胶材料的分子精确构建块,决定取决于各个组分化学特性和相互作用的材料性质。在此,我们介绍生物分子水凝胶,其中配体功能化的DNA序列构成水凝胶主链,多价蛋白质-配体相互作用形成超分子交联。在这些水凝胶中,我们可以独立利用DNA的可编程刚性(即单链与双链DNA)以及跨越超过10个数量级的确定的蛋白质-配体结合亲和力来调节凝胶硬度、应力松弛和剪切变稀。我们了解到:(1)双链网络的硬度值比单链网络高多达3个数量级,并表现出热响应性;(2)蛋白质-配体结合亲和力和解离速率常数决定了水凝胶的网络拓扑结构和应力松弛速率。最后,这些水凝胶表现出细胞相容性和细胞类型特异性降解,细胞可通过凝胶与其配体结合受体之间的相互作用在凝胶中迁移。总之,这项工作表明,改变水凝胶主链的局部化学相互作用以及动态交联的超分子结合亲和力可产生具有可调粘弹性性质的细胞相容性水凝胶,用于药物递送和组织工程应用。