Suppr超能文献

用于研究基因治疗反应的基因表达调控随机二元模型。

A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy.

作者信息

Giovanini Guilherme, Barros Luciana R C, Gama Leonardo R, Tortelli Tharcisio C, Ramos Alexandre F

机构信息

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil.

Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil.

出版信息

Cancers (Basel). 2022 Jan 27;14(3):633. doi: 10.3390/cancers14030633.

Abstract

In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.

摘要

在本手稿中,我们使用一个可精确求解的随机二元模型来调控基因表达,以分析针对旨在调节一个主调控开关基因转录本数量的治疗的反应动力学。挑战在于在不可避免的噪声环境中,将具有不同时间尺度的多个过程结合起来,以通过一个开关基因控制治疗反应。为了为模型参数建立生物学相关的时间尺度,我们选择了RKIP基因以及两种已知可改变癌细胞中RKIP水平的非特异性药物。我们通过模拟三种旨在使RKIP基因表达动力学恢复到癌前状态的治疗方案,证明了我们方法的有效性:(1)增加启动子的开启状态持续时间;(2)增加mRNA的合成速率;(3)增加两种速率。我们表明,启动子开启和关闭切换速度以及mRNA合成和降解的治疗前动力学速率将影响治疗反应的异质性和时间。因此,我们提出了一种策略,通过同时靶向多个有效代表基因表达调控基础化学过程的动力学速率,在降低药物剂量的同时,达到增加平均mRNA水平且减少异质性的目的。靶基因治疗反应异质性的降低有助于降低耐药性出现的几率。我们的方法可能有助于推断与抗转移基因或癌基因表达相关的动力学常数,以及设计针对主调控基因表达基础过程的多药治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7685/8833822/8e59c21c9a44/cancers-14-00633-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验