Gao Zhao, Han Yifei, Gao Zongchun, Wang Feng
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.
Acc Chem Res. 2018 Nov 20;51(11):2719-2729. doi: 10.1021/acs.accounts.8b00340. Epub 2018 Oct 24.
Platinum(II) terpyridine complexes have received tremendous attention in recent years because of their square-planar geometry and fascinating photophysics. Bottom-up self-assembly represents an intriguing approach to construct well-ordered supramolecular architectures with tunable optical and electronic properties. Until now, much effort has been devoted to the fabrication of monocomponent platinum(II) terpyridine-based assemblies. The next step is to develop multicomponent coassembled systems via the combination of platinum(II) terpyridine complexes with other π-organic and -organometallic molecules. The implementation of electron/energy transfer processes renders advanced functionality to the resulting coassemblies. For the fabrication of discrete multicomponent architectures, a feasible protocol is to construct preorganized molecular tweezers and macrocycles with the involvement of platinum(II) terpyridine complexes as the panel units. In view of their planar surface and positively charged character, such supramolecular receptors are capable of encapsulating electron-rich polyaromatic hydrocarbons and organometallic guests via donor-acceptor charge-transfer and/or metal-metal interactions. Intermolecular hydrogen bonds can be further incorporated between the molecular tweezers receptor and the polyaromatic hydrocarbon guests, giving rise to the strengthened binding affinity and sensitive stimuli-responsiveness. On this basis, multilayer donor-acceptor stacks have been obtained via the precise control over the number of pincers, which feature enhanced complexation strength and superior functionality. Moreover, platinum(II) terpyridine-based macrocycles are more suitable for guest accommodation than the corresponding molecular tweezers receptors in light of their definite size and constrained environment. Stimuli-responsive elements can be conveniently implemented into the rigid spacers of the molecular tweezers and macrocyclic receptors, facilitating the capture and release of the sandwiched guests in a highly controlled manner. On the other hand, long-range-ordered supramolecular polymers have been successfully fabricated with linear, hyperbranched, and cross-linked topologies by employing platinum(II) terpyridine-based molecular tweezers/guest recognition motifs as the non-covalent connecting unit. The degree of polymerization of the resulting donor-acceptor-type supramolecular polymers can be efficiently modulated by incorporating intermolecular hydrogen bonds between the molecular tweezers receptor and the complementary guest unit. An alternative approach toward extended multicomponent donor-acceptor assemblies is to mimic the structure of Magnus' green salt. A delicate balance of non-covalent driving forces between homo- and heterocomplexation processes and a deeper understanding of thermodynamic and kinetic behaviors play the decisive roles in the final arrangement of the coassembled structures. Overall, multicomponent coassembly of platinum(II) terpyridine complexes into well-ordered nanostructures would open up a new avenue toward functional supramolecular materials that are especially promising for sensing, optoelectronics, and catalytic applications.
近年来,由于其平面正方形几何结构和迷人的光物理性质,铂(II)三联吡啶配合物受到了极大的关注。自下而上的自组装是一种构建具有可调光学和电子性质的有序超分子结构的有趣方法。到目前为止,人们在制备基于单一组分铂(II)三联吡啶的组装体方面付出了很多努力。下一步是通过将铂(II)三联吡啶配合物与其他π-有机和有机金属分子相结合来开发多组分共组装体系。电子/能量转移过程的实现赋予了所得共组装体先进的功能。对于制备离散的多组分结构,一种可行的方案是构建预组织的分子镊子和大环,其中铂(II)三联吡啶配合物作为面板单元参与其中。鉴于它们的平面表面和带正电的特性,这种超分子受体能够通过供体-受体电荷转移和/或金属-金属相互作用来包封富电子的多环芳烃和有机金属客体。分子间氢键可以进一步引入到分子镊子受体和多环芳烃客体之间,从而增强结合亲和力并产生敏感的刺激响应性。在此基础上,通过精确控制钳子的数量获得了多层供体-受体堆叠结构,其具有增强的络合强度和优异的功能。此外,鉴于其确定的尺寸和受限的环境,基于铂(II)三联吡啶的大环比相应的分子镊子受体更适合客体容纳。刺激响应元件可以方便地引入到分子镊子和大环受体的刚性间隔物中,以高度可控的方式促进夹在中间的客体的捕获和释放。另一方面,通过使用基于铂(II)三联吡啶的分子镊子/客体识别基序作为非共价连接单元,已经成功制备了具有线性、超支化和交联拓扑结构的长程有序超分子聚合物。通过在分子镊子受体和互补客体单元之间引入分子间氢键,可以有效地调节所得供体-受体型超分子聚合物的聚合度。另一种构建扩展多组分供体-受体组装体的方法是模仿马格努斯绿盐的结构。均相和异相络合过程之间非共价驱动力的微妙平衡以及对热力学和动力学行为的更深入理解在共组装结构的最终排列中起决定性作用。总体而言,将铂(II)三联吡啶配合物多组分共组装成有序纳米结构将为功能超分子材料开辟一条新途径,这些材料在传感、光电子学和催化应用方面特别有前景。