Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India.
Mol Biol Cell. 2018 Dec 15;29(26):3183-3200. doi: 10.1091/mbc.E18-08-0515. Epub 2018 Oct 24.
Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here we construct the organization of this methionine-mediated anabolic program using yeast. Combining comparative transcriptome analysis and biochemical and metabolic flux-based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH)-dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP)-dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine-mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.
当所有氨基酸受到限制时,蛋氨酸的供应会使细胞在新陈代谢上重新编程,以支持细胞的增殖,而这一过程的潜在基础仍不清楚。在这里,我们使用酵母构建了这个蛋氨酸介导的合成代谢程序的组织。通过比较转录组分析以及生化和代谢通量为基础的方法,我们发现蛋氨酸通过增加一个关键调节节点的活性来重新调整整体代谢输出。这包括戊糖磷酸途径(PPP)与还原性生物合成、谷氨酸脱氢酶(GDH)依赖性谷氨酸/谷氨酰胺合成以及吡哆醛-5-磷酸(PLP)依赖性转氨基作用能力。这个 PPP-GDH-PLP 节点为后续氨基酸和核苷酸合成中限速反应所需的辅助因子和/或底物提供了来源。氨基酸生物合成中的这些限速步骤也以蛋氨酸依赖性的方式被诱导。这就形成了一个建立在有组织的合成代谢程序的生化级联反应。为了使这个蛋氨酸介导的合成代谢程序得以维持,细胞采用了一种“饥饿应激反应”调节剂 Gcn4p。总的来说,我们的数据表明,一个分层的代谢框架可以解释蛋氨酸如何介导合成代谢的转换。