Suppr超能文献

mTORC1信号通路氨基酸传感器时代的曙光

The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway.

作者信息

Wolfson Rachel L, Sabatini David M

机构信息

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.

出版信息

Cell Metab. 2017 Aug 1;26(2):301-309. doi: 10.1016/j.cmet.2017.07.001.

Abstract

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that responds to a diverse set of environmental inputs, including amino acids. Over the past 10 years, a number of proteins have been identified that help transmit amino acid availability to mTORC1. However, amino acid sensors for this pathway have only recently been discovered. Here, we review these recent advances and highlight the variety of unexplored questions that emerge from the identification of these sensors.

摘要

雷帕霉素复合物1(mTORC1)的机制靶点是细胞生长的主要调节因子,它对包括氨基酸在内的多种环境输入做出反应。在过去十年中,已经鉴定出许多有助于将氨基酸可用性传递给mTORC1的蛋白质。然而,该途径的氨基酸传感器直到最近才被发现。在这里,我们回顾这些最新进展,并强调从这些传感器的鉴定中出现的各种未探索的问题。

相似文献

1
The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway.
Cell Metab. 2017 Aug 1;26(2):301-309. doi: 10.1016/j.cmet.2017.07.001.
2
Sensors for the mTORC1 pathway regulated by amino acids.
J Zhejiang Univ Sci B. 2019;20(9):699-712. doi: 10.1631/jzus.B1900181.
3
SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1.
Autophagy. 2016 Jun 2;12(6):1061-2. doi: 10.1080/15548627.2015.1091143. Epub 2015 Oct 2.
4
The amino acid transporter SLC38A9 regulates MTORC1 and autophagy.
Autophagy. 2015;11(10):1709-10. doi: 10.1080/15548627.2015.1084461.
5
Recent advances in understanding of amino acid signaling to mTORC1 activation.
Front Biosci (Landmark Ed). 2019 Mar 1;24(5):971-982. doi: 10.2741/4762.
6
The Central Role of mTORC1 in Amino Acid Sensing.
Cancer Res. 2022 Sep 2;82(17):2964-2974. doi: 10.1158/0008-5472.CAN-21-4403.
8
Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes.
J Biomed Sci. 2020 Aug 17;27(1):87. doi: 10.1186/s12929-020-00679-2.
9
Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling.
Cell Rep. 2016 Aug 9;16(6):1510-1517. doi: 10.1016/j.celrep.2016.07.008. Epub 2016 Jul 28.
10
Amino acid sensing and activation of mechanistic target of rapamycin complex 1: implications for skeletal muscle.
Curr Opin Clin Nutr Metab Care. 2016 Jan;19(1):67-73. doi: 10.1097/MCO.0000000000000240.

引用本文的文献

1
Crosstalk between dysregulated amino acid sensing and glucose and lipid metabolism in colorectal cancer.
Front Oncol. 2025 Aug 29;15:1665056. doi: 10.3389/fonc.2025.1665056. eCollection 2025.
2
Differential cell survival outcomes in response to diverse amino acid stress.
Life Sci Alliance. 2025 Sep 5;8(11). doi: 10.26508/lsa.202503324. Print 2025 Nov.
5
mTORC1 senses glutamine and other amino acids through GCN2.
EMBO J. 2025 Jul 21. doi: 10.1038/s44318-025-00505-1.
6
The Molecular Basis of Amino Acids Sensing.
Adv Sci (Weinh). 2025 Jul;12(26):e2501889. doi: 10.1002/advs.202501889. Epub 2025 May 24.
7
Analysis of the mechanism of skeletal muscle atrophy from the pathway of decreased protein synthesis.
Front Physiol. 2025 Apr 25;16:1533394. doi: 10.3389/fphys.2025.1533394. eCollection 2025.
8
Amino acids in cancer: Understanding metabolic plasticity and divergence for better therapeutic approaches.
Cell Rep. 2025 Apr 22;44(4):115529. doi: 10.1016/j.celrep.2025.115529. Epub 2025 Apr 6.
9
Ancient genomic linkage of α-globin and Nprl3 couples metabolism with erythropoiesis.
Nat Commun. 2025 Mar 24;16(1):2749. doi: 10.1038/s41467-025-57683-z.
10
Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation.
Wiley Interdiscip Rev RNA. 2025 Mar-Apr;16(2):e70011. doi: 10.1002/wrna.70011.

本文引用的文献

1
mTOR Signaling in Growth, Metabolism, and Disease.
Cell. 2017 Apr 6;169(2):361-371. doi: 10.1016/j.cell.2017.03.035.
3
SZT2 dictates GATOR control of mTORC1 signalling.
Nature. 2017 Mar 16;543(7645):433-437. doi: 10.1038/nature21378. Epub 2017 Feb 15.
4
KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1.
Nature. 2017 Mar 16;543(7645):438-442. doi: 10.1038/nature21423. Epub 2017 Feb 15.
5
The apo-structure of the leucine sensor Sestrin2 is still elusive.
Sci Signal. 2016 Sep 20;9(446):ra92. doi: 10.1126/scisignal.aah4497.
6
Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism.
Cell. 2016 Aug 25;166(5):1324-1337.e11. doi: 10.1016/j.cell.2016.07.040.
7
Mechanism of arginine sensing by CASTOR1 upstream of mTORC1.
Nature. 2016 Aug 11;536(7615):229-33. doi: 10.1038/nature19079. Epub 2016 Aug 3.
8
Sestrin regulation of TORC1: Is Sestrin a leucine sensor?
Sci Signal. 2016 Jun 7;9(431):re5. doi: 10.1126/scisignal.aaf2885.
9
The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway.
Cell. 2016 Mar 24;165(1):153-164. doi: 10.1016/j.cell.2016.02.035. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验