Suppr超能文献

由奖励时间偏好定义的人类认知原型及其大脑相关性:一种进化权衡方法。

Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach.

机构信息

Department of General Psychology, University of Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Italy.

Department of Physics, University of Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Italy.

出版信息

Neuroimage. 2019 Jan 15;185:322-334. doi: 10.1016/j.neuroimage.2018.10.050. Epub 2018 Oct 21.

Abstract

Biological systems carry out multiple tasks in their lifetime, which, in the course of evolution, may lead to trade-offs. In fact phenotypes (different species, individuals within a species, circuits, bacteria, proteins, etc.) cannot be optimal at all tasks, and, according to Pareto optimality theory, lay into a well-defined geometrical distribution (polygons and/or polyhedrons) in the space of traits. The vertices of this distribution contain archetypes, namely phenotypes that are specialists at one of the tasks, whereas phenotypes toward the center of the geometrical distribution show average performance across tasks. We applied this theory to the variability of cognitive and behavioral scores measured in 1206 individuals from the Human Connectome Project. Among all possible combinations of pairs of traits, we found the best fit to Pareto optimality when individuals were plotted in the trait-space of time preferences for reward, evaluated with the Delay Discounting Task (DDT). The DDT measures subjects' preference in choosing either immediate smaller rewards or delayed larger rewards. Time preference for reward was described by a triangular distribution in which each of the three vertices included individuals who used a particular strategy to discount reward. These archetypes accounted for variability on many cognitive, personality, and socioeconomic status variables, as well as differences in brain structure and functional connectivity, with only a weak influence of genetics. In summary, time preference for reward reflects a core variable that biases human phenotypes via natural and cultural selection.

摘要

生物系统在其一生中执行多种任务,这些任务在进化过程中可能导致权衡。事实上,表型(不同物种、同一物种内的个体、电路、细菌、蛋白质等)不可能在所有任务中都是最优的,并且根据 Pareto 最优性理论,它们在特征空间中呈现出明确的几何分布(多边形和/或多面体)。该分布的顶点包含原型,即专门从事一项任务的表型,而位于几何分布中心的表型则在各项任务中表现出平均水平。我们将这一理论应用于人类连接组计划中 1206 个人的认知和行为评分的可变性研究。在所有可能的特征对组合中,当将个体绘制在通过延迟折扣任务(DDT)评估的奖励时间偏好的特征空间中时,发现与 Pareto 最优性的拟合度最佳。DDT 测量了受试者在选择即时较小奖励或延迟较大奖励之间的偏好。奖励的时间偏好呈三角形分布,其中每个顶点都包括使用特定策略来折扣奖励的个体。这些原型解释了许多认知、人格和社会经济地位变量的变异性,以及大脑结构和功能连接的差异,而遗传的影响很小。总之,奖励的时间偏好反映了一种核心变量,通过自然和文化选择影响人类表型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验