Suppr超能文献

创伤复苏中基于语言的过程阶段检测

Language-Based Process Phase Detection in the Trauma Resuscitation.

作者信息

Gu Yue, Li Xinyu, Chen Shuhong, Li Hunagcan, Farneth Richard A, Marsic Ivan, Burd Randall S

机构信息

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA.

Trauma and Burn Surgery, Children's National Medical Center, Washington, DC, USA.

出版信息

Proc (IEEE Int Conf Healthc Inform). 2017 Aug;2017:239-247. doi: 10.1109/ICHI.2017.50. Epub 2017 Sep 14.

Abstract

Process phase detection has been widely used in surgical process modeling (SPM) to track process progression. These studies mostly used video and embedded sensor data, but spoken language also provides rich semantic information directly related to process progression. We present a long-short term memory (LSTM) deep learning model to predict trauma resuscitation phases using verbal communication logs. We first use an LSTM to extract the sentence meaning representations, and then sequentially feed them into another LSTM to extract the meaning of a sentence group within a time window. This information is ultimately used for phase prediction. We used 24 manually-transcribed trauma resuscitation cases to train, and the remaining 6 cases to test our model. We achieved 79.12% accuracy, and showed performance advantages over existing visual-audio systems for critical phases of the process. In addition to language information, we evaluated a multimodal phase prediction structure that also uses audio input. We finally identified the challenges of substituting manual transcription with automatic speech recognition in trauma resuscitation.

摘要

过程阶段检测已广泛应用于手术过程建模(SPM)以跟踪过程进展。这些研究大多使用视频和嵌入式传感器数据,但口语也提供了与过程进展直接相关的丰富语义信息。我们提出了一种长短期记忆(LSTM)深度学习模型,用于使用言语交流日志预测创伤复苏阶段。我们首先使用LSTM提取句子意义表示,然后将它们依次输入另一个LSTM以提取时间窗口内句子组的意义。此信息最终用于阶段预测。我们使用24个手动转录的创伤复苏病例进行训练,其余6个病例用于测试我们的模型。我们实现了79.12%的准确率,并在过程的关键阶段显示出优于现有视听系统的性能。除了语言信息,我们还评估了一种也使用音频输入的多模态阶段预测结构。我们最终确定了在创伤复苏中用自动语音识别替代手动转录的挑战。

相似文献

1
Language-Based Process Phase Detection in the Trauma Resuscitation.创伤复苏中基于语言的过程阶段检测
Proc (IEEE Int Conf Healthc Inform). 2017 Aug;2017:239-247. doi: 10.1109/ICHI.2017.50. Epub 2017 Sep 14.
4
Progress Estimation and Phase Detection for Sequential Processes.顺序过程的进度估计与阶段检测
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3). doi: 10.1145/3130936.
5
Online Process Phase Detection Using Multimodal Deep Learning.基于多模态深度学习的在线过程阶段检测
Ubiquitous Comput Electron Mob Commun Conf (UEMCON) IEEE Annu. 2016 Oct;2016. doi: 10.1109/UEMCON.2016.7777912. Epub 2016 Dec 12.
10
English Grammar Detection Based on LSTM-CRF Machine Learning Model.基于 LSTM-CRF 机器学习模型的英语语法检测。
Comput Intell Neurosci. 2021 Aug 17;2021:8545686. doi: 10.1155/2021/8545686. eCollection 2021.

引用本文的文献

1
State-of-the-art of situation recognition systems for intraoperative procedures.术中操作情境识别系统的最新技术。
Med Biol Eng Comput. 2022 Apr;60(4):921-939. doi: 10.1007/s11517-022-02520-4. Epub 2022 Feb 17.
3
CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions.CAI4CAI:计算机辅助干预中情境人工智能的兴起
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):198-214. doi: 10.1109/JPROC.2019.2946993. Epub 2019 Oct 23.
4
DEEP MULTIMODAL LEARNING FOR EMOTION RECOGNITION IN SPOKEN LANGUAGE.用于口语情感识别的深度多模态学习
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:5079-5083. doi: 10.1109/ICASSP.2018.8462440. Epub 2018 Sep 13.

本文引用的文献

1
Speech Intention Classification with Multimodal Deep Learning.基于多模态深度学习的语音意图分类
Adv Artif Intell. 2017 May;10233:260-271. doi: 10.1007/978-3-319-57351-9_30. Epub 2017 Apr 11.
2
Deep Learning for RFID-Based Activity Recognition.基于射频识别的活动识别的深度学习
Proc Int Conf Embed Netw Sens Syst. 2016 Nov;2016:164-175. doi: 10.1145/2994551.2994569.
3
Online Process Phase Detection Using Multimodal Deep Learning.基于多模态深度学习的在线过程阶段检测
Ubiquitous Comput Electron Mob Commun Conf (UEMCON) IEEE Annu. 2016 Oct;2016. doi: 10.1109/UEMCON.2016.7777912. Epub 2016 Dec 12.
4
5
Automatic phase prediction from low-level surgical activities.基于低级别手术活动的自动阶段预测。
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):833-41. doi: 10.1007/s11548-015-1195-0. Epub 2015 Apr 23.
8
Statistical modeling and recognition of surgical workflow.手术流程的统计建模与识别。
Med Image Anal. 2012 Apr;16(3):632-41. doi: 10.1016/j.media.2010.10.001. Epub 2010 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验