Suppr超能文献

基于 LSTM-CRF 机器学习模型的英语语法检测。

English Grammar Detection Based on LSTM-CRF Machine Learning Model.

机构信息

School of International Education, Hunan University of Medicine, Huaihua, Hunan 418000, China.

College of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China.

出版信息

Comput Intell Neurosci. 2021 Aug 17;2021:8545686. doi: 10.1155/2021/8545686. eCollection 2021.

Abstract

Deep learning and neural network have been widely used in the field of speech, vocabulary, text, pictures, and other information processing fields, which has achieved excellent research results. Neural network algorithm and prediction model were used in this paper for the study and exploration of English grammar. Aiming at the application requirements of English grammar accuracy and standardization, we proposed a machine learning model based on LSTM-CRF to detect and analyze English grammar. This paper briefly summarized the development trend of deep learning and neural network algorithm and designed the structure pattern of radial basis function neural network in grammar semantic detection and analysis on the basis of deep learning artificial neural network theory. Based on the morphological features of English grammar, a grammar database was established according to the rules of English word segmentation. In this paper, we proposed an improved conditional random field CRF (Conditional Random Field) network model based on LSTM (Long Short-Term Memory) neural network. It can improve the problem that the traditional machine learning model relies on feature point selection in English grammar detection. The machine learning model based on LSTM-CRF was used to recognize English grammar text entities. The results show that the English grammar detection system based on the LSTM-CRF model can simplify the process structure in the recognition process, reduce the unnecessary operation cycle, and improve the overall detection accuracy.

摘要

深度学习和神经网络已广泛应用于语音、词汇、文本、图片等信息处理领域,取得了优异的研究成果。本文将神经网络算法和预测模型应用于英语语法的研究和探索。针对英语语法准确性和标准化的应用需求,我们提出了一种基于 LSTM-CRF 的机器学习模型,用于检测和分析英语语法。本文简要总结了深度学习和神经网络算法的发展趋势,在深度学习人工神经网络理论的基础上,设计了语法语义检测和分析中基于径向基函数神经网络的结构模式。基于英语语法的形态特征,根据英语分词规则建立了语法数据库。本文提出了一种基于 LSTM(长短期记忆)神经网络的改进条件随机场 CRF(条件随机场)网络模型,可以解决传统机器学习模型在英语语法检测中依赖特征点选择的问题。基于 LSTM-CRF 的机器学习模型用于识别英语语法文本实体。结果表明,基于 LSTM-CRF 模型的英语语法检测系统可以简化识别过程中的流程结构,减少不必要的操作周期,提高整体检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5808/8387171/c886cd59135c/CIN2021-8545686.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验