Suppr超能文献

亚细胞分辨率定量实时成像谷胱甘肽。

Quantitative Real-Time Imaging of Glutathione with Subcellular Resolution.

机构信息

1 Department of Pharmacology and Chemical Biology,Baylor College of Medicine, Houston, Texas.

2 Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.

出版信息

Antioxid Redox Signal. 2019 Jun 1;30(16):1900-1910. doi: 10.1089/ars.2018.7605. Epub 2018 Dec 20.

Abstract

AIMS

Quantitative imaging of glutathione (GSH) with high spatial and temporal resolution is essential for studying the roles of GSH in redox biology. To study the long-standing question of compartmentalization of GSH, especially its distribution between the nucleus and cytosol, an organelle-targeted quantitative probe is needed.

RESULTS

We developed a reversible reaction-based ratiometric fluorescent probe-HaloRT-that can quantitatively measure GSH dynamics with subcellular resolution in real time. Using HaloRT, we quantitatively measured the GSH concentrations in the nucleus and cytosol of HeLa cells and primary hepatocytes under different treatment conditions and found no appreciable concentration gradients between these two organelles. Innovation and Conclusion: We developed the first reversible ratiometric GSH probe that can be universally targeted to any organelle of interest. Taking advantage of this new tool, we provided definitive evidence showing that GSH concentrations are not significantly different between the nucleus and cytosol, challenging the view of nuclear compartmentalization of GSH.

摘要

目的

高时空分辨率的谷胱甘肽 (GSH) 定量成像对于研究 GSH 在氧化还原生物学中的作用至关重要。为了研究 GSH 的区室化(特别是其在核和细胞质之间的分布)这一长期存在的问题,需要一种靶向细胞器的定量探针。

结果

我们开发了一种基于可逆反应的比率荧光探针-HaloRT-它可以实时以亚细胞分辨率定量测量 GSH 的动力学。使用 HaloRT,我们定量测量了不同处理条件下 HeLa 细胞和原代肝细胞中核和细胞质的 GSH 浓度,并未发现这两个细胞器之间存在明显的浓度梯度。

创新与结论

我们开发了第一个可普遍靶向任何感兴趣细胞器的可逆比率 GSH 探针。利用这个新工具,我们提供了明确的证据表明,核和细胞质中的 GSH 浓度没有显著差异,这挑战了 GSH 核区室化的观点。

相似文献

1
Quantitative Real-Time Imaging of Glutathione with Subcellular Resolution.
Antioxid Redox Signal. 2019 Jun 1;30(16):1900-1910. doi: 10.1089/ars.2018.7605. Epub 2018 Dec 20.
2
Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe.
ACS Chem Biol. 2015 Mar 20;10(3):864-74. doi: 10.1021/cb500986w. Epub 2015 Jan 6.
3
A locally activatable sensor for robust quantification of organellar glutathione.
Nat Chem. 2023 Oct;15(10):1415-1421. doi: 10.1038/s41557-023-01249-3. Epub 2023 Jun 15.
4
A Reversible Fluorescent Probe for Real-Time Quantitative Monitoring of Cellular Glutathione.
Angew Chem Int Ed Engl. 2017 May 15;56(21):5812-5816. doi: 10.1002/anie.201702114. Epub 2017 Mar 28.
5
A reversible turn-on fluorescent probe for quantitative imaging and dynamic monitoring of cellular glutathione.
Anal Chim Acta. 2022 Jun 29;1214:339957. doi: 10.1016/j.aca.2022.339957. Epub 2022 May 21.
6
Rational design of a reversible fluorescent probe for sensing GSH in mitochondria.
Anal Chim Acta. 2022 Aug 8;1220:340081. doi: 10.1016/j.aca.2022.340081. Epub 2022 Jun 13.
8
A rhodol-hemicyanine based ratiometric fluorescent probe for real-time monitoring of glutathione dynamics in living cells.
Analyst. 2019 Dec 21;144(24):7457-7462. doi: 10.1039/c9an01852b. Epub 2019 Nov 11.
9
A novel fluorescent probe for detection of Glutathione dynamics during ROS-induced redox imbalance.
Anal Chim Acta. 2020 Jun 8;1115:52-60. doi: 10.1016/j.aca.2020.02.059. Epub 2020 Feb 28.
10
Real-Time Imaging of Intracellular Glutathione Levels Based on a Ratiometric Fluorescent Probe with Extremely Fast Response.
Anal Chem. 2020 Jul 21;92(14):10068-10075. doi: 10.1021/acs.analchem.0c01881. Epub 2020 Jun 30.

引用本文的文献

1
Rapid ER remodeling induced by a peptide-lipid complex in dying tumor cells.
Life Sci Alliance. 2025 Mar 25;8(6). doi: 10.26508/lsa.202403114. Print 2025 Jun.
2
Development of a Novel Amplifiable System to Quantify Hydrogen Peroxide in Living Cells.
J Am Chem Soc. 2024 Aug 14;146(32):22396-22404. doi: 10.1021/jacs.4c05366. Epub 2024 Jul 30.
3
Glutathione dynamics in subcellular compartments and implications for drug development.
Curr Opin Chem Biol. 2024 Aug;81:102505. doi: 10.1016/j.cbpa.2024.102505. Epub 2024 Jul 24.
4
Rigor and reproducibility in human brain organoid research: Where we are and where we need to go.
Stem Cell Reports. 2024 Jun 11;19(6):796-816. doi: 10.1016/j.stemcr.2024.04.008. Epub 2024 May 16.
5
VPS13C regulates phospho-Rab10-mediated lysosomal function in human dopaminergic neurons.
J Cell Biol. 2024 May 6;223(5). doi: 10.1083/jcb.202304042. Epub 2024 Feb 15.
6
Parkin regulates amino acid homeostasis at mitochondria-lysosome (M/L) contact sites in Parkinson's disease.
Sci Adv. 2023 Jul 21;9(29):eadh3347. doi: 10.1126/sciadv.adh3347. Epub 2023 Jul 19.
7
A locally activatable sensor for robust quantification of organellar glutathione.
Nat Chem. 2023 Oct;15(10):1415-1421. doi: 10.1038/s41557-023-01249-3. Epub 2023 Jun 15.
8
Discovery of a potent BTK and IKZF1/3 triple degrader through reversible covalent BTK PROTAC development.
Curr Res Chem Biol. 2022;2. doi: 10.1016/j.crchbi.2022.100029. Epub 2022 May 17.
9
Fluorescent Sensing of Glutathione and Related Bio-Applications.
Biosensors (Basel). 2022 Dec 23;13(1):16. doi: 10.3390/bios13010016.

本文引用的文献

1
Reversible Reaction-Based Fluorescent Probe for Real-Time Imaging of Glutathione Dynamics in Mitochondria.
ACS Sens. 2017 Sep 22;2(9):1257-1261. doi: 10.1021/acssensors.7b00425. Epub 2017 Aug 18.
2
Quantitative real-time imaging of glutathione.
Nat Commun. 2017 Jul 13;8:16087. doi: 10.1038/ncomms16087.
3
A Reversible Fluorescent Probe for Real-Time Quantitative Monitoring of Cellular Glutathione.
Angew Chem Int Ed Engl. 2017 May 15;56(21):5812-5816. doi: 10.1002/anie.201702114. Epub 2017 Mar 28.
5
Biosensor reveals multiple sources for mitochondrial NAD⁺.
Science. 2016 Jun 17;352(6292):1474-7. doi: 10.1126/science.aad5168.
7
Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe.
ACS Chem Biol. 2015 Mar 20;10(3):864-74. doi: 10.1021/cb500986w. Epub 2015 Jan 6.
8
Nuclear glutathione.
Biochim Biophys Acta. 2013 May;1830(5):3304-16. doi: 10.1016/j.bbagen.2012.10.005. Epub 2012 Oct 13.
9
HaloTag: a novel protein labeling technology for cell imaging and protein analysis.
ACS Chem Biol. 2008 Jun 20;3(6):373-82. doi: 10.1021/cb800025k.
10
Real-time imaging of the intracellular glutathione redox potential.
Nat Methods. 2008 Jun;5(6):553-9. doi: 10.1038/nmeth.1212. Epub 2008 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验