From the Department of Cellular and Molecular Medicine, Lerner Research Institute (S.M.S., W.Z., K.A.R., Z.W., X.J., J.K., B.H., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.
Center for Microbiome and Human Health, Lerner Research Institute (S.M.S., W.Z., K.A.R., Z.W., J.K., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH.
Circ Res. 2018 Oct 26;123(10):1164-1176. doi: 10.1161/CIRCRESAHA.118.313142.
Gut microbes influence cardiovascular disease and thrombosis risks through the production of trimethylamine N-oxide (TMAO). Microbiota-dependent generation of trimethylamine (TMA)-the precursor to TMAO-is rate limiting in the metaorganismal TMAO pathway in most humans and is catalyzed by several distinct microbial choline TMA-lyases, including the proteins encoded by the cutC/D (choline utilization C/D) genes in multiple human commensals.
Direct demonstration that the gut microbial cutC gene is sufficient to transmit enhanced platelet reactivity and thrombosis potential in a host via TMA/TMAO generation has not yet been reported.
Herein, we use gnotobiotic mice and a series of microbial colonization studies to show that microbial cutC-dependent TMA/TMAO production is sufficient to transmit heightened platelet reactivity and thrombosis potential in a host. Specifically, we examine in vivo thrombosis potential employing germ-free mice colonized with either high TMA-producing stable human fecal polymcrobial communities or a defined CutC-deficient background microbial community coupled with a CutC-expressing human commensal±genetic disruption of its cutC gene (ie, Clostridium sporogenes Δ cutC).
Collectively, these studies point to the microbial choline TMA-lyase pathway as a rational molecular target for the treatment of atherothrombotic heart disease.
肠道微生物通过产生三甲胺 N-氧化物(TMAO)影响心血管疾病和血栓形成风险。在大多数人中,微生物依赖性的三甲胺(TMA)-TMAO 的前体生成是代谢生物体 TMAO 途径中的限速步骤,由几种不同的微生物胆碱 TMA 裂解酶催化,包括多个人类共生菌中编码的 cutC/D(胆碱利用 C/D)基因的蛋白质。
尚未有报道直接证明肠道微生物 cutC 基因通过 TMA/TMAO 的产生足以在宿主中传递增强的血小板反应性和血栓形成倾向。
本文中,我们使用无菌小鼠和一系列微生物定植研究表明,微生物依赖的 cutC 的 TMA/TMAO 产生足以在宿主中传递更高的血小板反应性和血栓形成倾向。具体而言,我们通过定植高 TMA 产生稳定的人类粪便多微生物群落或具有定义的 CutC 缺陷背景微生物群落的无菌小鼠,并结合表达 CutC 的人类共生菌和(或)其 cutC 基因的遗传破坏(即凝结芽孢杆菌ΔcutC)来检测体内血栓形成倾向。
这些研究共同表明,微生物胆碱 TMA 裂解酶途径是治疗动脉血栓性心脏病的合理分子靶点。