Suppr超能文献

心脏数字孪生体:一种用于研究糖尿病性心脏功能与治疗的工具。

Cardiac digital twins: a tool to investigate the function and treatment of the diabetic heart.

作者信息

Strocchi Marina, Hammersley Daniel J, Halliday Brian P, Prasad Sanjay K, Niederer Steven A

机构信息

National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, London, W12 0NN, UK.

King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK.

出版信息

Cardiovasc Diabetol. 2025 Jul 18;24(1):293. doi: 10.1186/s12933-025-02839-w.

Abstract

Diabetes increases the risk of cardiovascular disease (CVD) due to its multi-scale and diverse effects on cardiomyocyte metabolism and function, the circulation, and the kidneys. The complex relationship between organ systems affected by diabetes and associated comorbidities leads to challenges in estimating cardiovascular risk and stratifying optimal treatment strategies at the individual patient level. Most recently, sodium-glucose transport protein 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP1) receptor agonists have been shown to offer substantial cardiac benefits. However, the direct or indirect mechanisms through which these agents protect the heart remain unclear, posing a challenge to patient selection. Amidst a growing burden of diabetes and increased therapeutic armamentarium, there is an important unmet need to develop more precise methods and technologies to understand the effects of diabetes and anti-diabetic treatment on the heart with faster timelines than conventional randomised controlled trials. Cardiac computational models could be used to improve our understanding of the cardiac changes in diabetes and to predict how a patient's heart will respond to anti-diabetic treatment. In this review, we provide an overview of current cardiac computational models to investigate the diabetic heart and the cardiac effects of anti-diabetic treatment. We discuss how multi-scale and multi-physics models could be applied in future to support the development of novel therapeutic approaches and further improve the treatment of diabetic patients with different CVD risk.

摘要

糖尿病因其对心肌细胞代谢与功能、循环系统及肾脏产生多尺度和多样的影响,从而增加了心血管疾病(CVD)的风险。受糖尿病影响的器官系统与相关合并症之间的复杂关系,给在个体患者层面评估心血管风险和分层优化治疗策略带来了挑战。最近,已证实钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂和胰高血糖素样肽-1(GLP1)受体激动剂具有显著的心脏保护作用。然而,这些药物保护心脏的直接或间接机制仍不清楚,这给患者选择带来了挑战。在糖尿病负担日益加重且治疗手段不断增加的情况下,迫切需要开发更精确的方法和技术,以便比传统随机对照试验更快地了解糖尿病和抗糖尿病治疗对心脏的影响。心脏计算模型可用于增进我们对糖尿病心脏变化的理解,并预测患者心脏对抗糖尿病治疗的反应。在本综述中,我们概述了当前用于研究糖尿病心脏及抗糖尿病治疗心脏效应的心脏计算模型。我们讨论了多尺度和多物理模型未来如何应用,以支持新型治疗方法的开发,并进一步改善不同心血管疾病风险的糖尿病患者的治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验