Romano Kymberleigh A, Vivas Eugenio I, Amador-Noguez Daniel, Rey Federico E
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
mBio. 2015 Mar 17;6(2):e02481. doi: 10.1128/mBio.02481-14.
Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans.
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and increased trimethylamine N-oxide (TMAO) levels have been causally linked with CVD development. This work identifies members of the human gut microbiota responsible for both the accumulation of trimethylamine (TMA), the precursor of the proatherogenic compound TMAO, and subsequent decreased choline bioavailability to the host. Understanding how to manipulate the representation and function of choline-consuming, TMA-producing species in the intestinal microbiota could potentially lead to novel means for preventing or treating atherosclerosis and choline deficiency-associated diseases.
胆碱是人类生命必需的水溶性营养素。胆碱经肠道微生物代谢产生三甲胺(TMA),宿主吸收后在肝脏中转化为氧化三甲胺(TMAO)。最近的研究表明,TMAO会加剧小鼠的动脉粥样硬化,并且与人类该疾病的严重程度呈正相关。然而,哪些微生物促成了人体肠道中TMA的产生,宿主因素(如基因型)和饮食在多大程度上影响TMA的产生以及这些微生物的定殖,以及产生TMA的微生物对膳食胆碱生物利用度的影响,这些问题在很大程度上仍不清楚。我们筛选了一组79株已测序的人体肠道分离株,这些分离株涵盖了人体肠道中发现的主要门类,并鉴定出9株能够在体外从胆碱产生TMA的菌株。无菌小鼠研究表明,TMAO在定殖有产生TMA物种的动物血清中积累,但在定殖有体外不能从胆碱产生TMA的肠道分离株的动物血清中则不会积累。值得注意的是,产生TMA的细菌低水平定殖会显著降低宿主可利用的胆碱水平。随着产生TMA细菌丰度的增加,这种效应更加明显。我们的研究结果为设计旨在改变人体肠道中产生TMA细菌的占比或活性的策略提供了一个框架,并表明在对人类胆碱摄入需求提出建议时,应考虑肠道微生物群的TMA产生状态。
心血管疾病(CVD)是全球死亡和残疾的主要原因,氧化三甲胺(TMAO)水平升高与CVD的发展存在因果关系。这项工作确定了人体肠道微生物群中既负责促动脉粥样硬化化合物TMAO的前体三甲胺(TMA)积累,又负责随后降低宿主胆碱生物利用度的成员。了解如何操控肠道微生物群中消耗胆碱、产生TMA的物种的占比和功能,可能会带来预防或治疗动脉粥样硬化以及胆碱缺乏相关疾病的新方法。