Suppr超能文献

基于聚类算法和统计推断的空中交通管制中视觉注意力表现的内在因素的系统评估。

Systematic assessment of intrinsic factors influencing visual attention performances in air traffic control via clustering algorithm and statistical inference.

机构信息

Research Institute of Civil Aviation Safety, Civil Aviation University of China, Tianjin 300300, P. R. China.

National Key Laboratory of Air Traffic Operation Safety Technology, Civil Aviation University of China, Tianjin 300300, P. R. China.

出版信息

PLoS One. 2018 Oct 25;13(10):e0205334. doi: 10.1371/journal.pone.0205334. eCollection 2018.

Abstract

The intrinsic factors (IF) influencing visual attention performance (VAP) might cause potential human errors, such as "error/mistake", "forgetting" and "omission". It is a key issue to develop a systematic assessment of IF in order to distinguish the levels of VAP. Motivated by the Stimulus-Response (S-R) model, we take an interactive cancellation test-Neuron Type Test (NTT)-to explore the IF and present the corresponding systematic assessment. The main contributions of this work include three elements: a) modeling the IF on account of attention span, attention stability, distribution-shift of attention with measurable parameters by combining the psychological and statistical concepts; b) proposing quantitative analysis methods for assessing the IF via its computational representation-intrinsic qualities (IQ)-in the sense of computational model; and c) clustering the IQ of air traffic control (ATC) students in the feature space of interest. The response sequences of participants collected with the NTT system are characterized by three parameters: Hurst exponent, normalized number of decisions (NNoD) and error rate of decisions (ERD). The K-means clustering is applied to partition the feature space constructed from practical data of VAP. For the distinguishable clusters, the statistical inference is utilized to refine the assessment of IF. Our comprehensive analysis shows that the IQ can be classified into four levels, i.e., excellent, good, moderate and unqualified, which has a potential application in selecting air traffic controllers subject to reducing the risk of the inadequacy of attention performances in aviation safety management.

摘要

内在因素(IF)会影响视觉注意绩效(VAP),可能会导致人为失误,如“错误/失误”、“遗忘”和“遗漏”。为了区分 VAP 的水平,开发一种系统的 IF 评估方法是一个关键问题。受刺激-反应(S-R)模型的启发,我们采用交互消除测试-神经元类型测试(NTT)来探索 IF 并呈现相应的系统评估。这项工作的主要贡献包括三个方面:a)结合心理和统计概念,根据注意力持续时间、注意力稳定性、注意力分布转移来对 IF 进行建模,注意力的可测量参数;b)通过其计算表示-内在品质(IQ)-从计算模型的角度提出评估 IF 的定量分析方法;c)在感兴趣的特征空间中对空中交通管制(ATC)学生的 IQ 进行聚类。参与者用 NTT 系统收集的反应序列由三个参数来描述:赫斯特指数、归一化决策数(NNoD)和决策错误率(ERD)。K-均值聚类被应用于从 VAP 的实际数据构建的特征空间中进行分区。对于可区分的聚类,利用统计推断来细化 IF 的评估。我们的综合分析表明,IQ 可以分为四个等级,即优秀、良好、中等和不合格,这在航空安全管理中选择空中交通管制员以降低注意力表现不足的风险方面具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ae/6201895/b15434ef515e/pone.0205334.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验