Suppr超能文献

基于表面模式分析的白光结肠镜下息肉组织学计算机辅助预测。

Computer-aided prediction of polyp histology on white light colonoscopy using surface pattern analysis.

机构信息

Endoscopy Unit, Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain.

Computer Science Department, Universitat Autònoma de Barcelona and Computer Vision Center, Barcelona, Spain.

出版信息

Endoscopy. 2019 Mar;51(3):261-265. doi: 10.1055/a-0732-5250. Epub 2018 Oct 25.

Abstract

BACKGROUND

This study aimed to evaluate a new computational histology prediction system based on colorectal polyp textural surface patterns using high definition white light images.

METHODS

Textural elements (textons) were characterized according to their contrast with respect to the surface, shape, and number of bifurcations, assuming that dysplastic polyps are associated with highly contrasted, large tubular patterns with some degree of bifurcation. Computer-aided diagnosis (CAD) was compared with pathological diagnosis and the diagnosis made by endoscopists using Kudo and Narrow-Band Imaging International Colorectal Endoscopic classifications.

RESULTS

Images of 225 polyps were evaluated (142 dysplastic and 83 nondysplastic). The CAD system correctly classified 205 polyps (91.1 %): 131/142 dysplastic (92.3 %) and 74/83 (89.2 %) nondysplastic. For the subgroup of 100 diminutive polyps (≤ 5 mm), CAD correctly classified 87 polyps (87.0 %): 43/50 (86.0 %) dysplastic and 44/50 (88.0 %) nondysplastic. There were no statistically significant differences in polyp histology prediction between the CAD system and endoscopist assessment.

CONCLUSION

A computer vision system based on the characterization of the polyp surface in white light accurately predicted colorectal polyp histology.

摘要

背景

本研究旨在评估一种基于大肠息肉纹理表面模式的新型计算组织学预测系统,该系统使用高清白光图像。

方法

根据纹理元素(textons)相对于表面、形状和分叉数量的对比度进行特征化,假设异型增生性息肉与高度对比、具有一定分叉程度的大管状模式相关。计算机辅助诊断(CAD)与病理诊断以及内窥镜医生使用 Kudo 和窄带成像国际结直肠内窥镜分类的诊断进行比较。

结果

评估了 225 个息肉的图像(142 个异型增生和 83 个非异型增生)。CAD 系统正确分类了 205 个息肉(91.1%):131/142 个异型增生(92.3%)和 74/83 个非异型增生(89.2%)。对于 100 个微小息肉(≤5 毫米)的亚组,CAD 正确分类了 87 个息肉(87.0%):43/50 个异型增生(86.0%)和 44/50 个非异型增生(88.0%)。CAD 系统和内窥镜医生评估之间在预测息肉组织学方面没有统计学上的显著差异。

结论

基于白光下息肉表面特征化的计算机视觉系统准确预测了大肠息肉的组织学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验