González-Bueno Puyal Juana, Brandao Patrick, Ahmad Omer F, Bhatia Kanwal K, Toth Daniel, Kader Rawen, Lovat Laurence, Mountney Peter, Stoyanov Danail
Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TY, UK.
Odin Vision, London W1W 7TY, UK.
Biomed Opt Express. 2023 Jan 4;14(2):593-607. doi: 10.1364/BOE.473446. eCollection 2023 Feb 1.
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
结肠镜检查仍然是结直肠癌筛查的金标准检查方法,因为它提供了检测和切除癌前息肉的机会。计算机辅助息肉特征描述可以确定哪些息肉需要进行息肉切除术,最近基于深度学习的方法作为临床决策支持工具已显示出有前景的结果。然而,在检查过程中息肉的外观可能会有所不同,这使得自动预测不稳定。在本文中,我们研究了使用时空信息来提高病变分类为腺瘤或非腺瘤的性能。我们实施了两种方法,在内部和公开可用的基准数据集上进行的大量实验中,均显示出性能和鲁棒性的提高。