Suppr超能文献

一种基于端到端深度学习的智能代理,能够在未知环境中自主探索。

An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.

机构信息

Smart Autonomous Systems Lab, School of Mechanical & Automotive Engineering, Kunsan National University, Gunsan, Jeonbuk 54150, Korea.

出版信息

Sensors (Basel). 2018 Oct 22;18(10):3575. doi: 10.3390/s18103575.

Abstract

In recent years, machine learning (and as a result artificial intelligence) has experienced considerable progress. As a result, robots in different shapes and with different purposes have found their ways into our everyday life. These robots, which have been developed with the goal of human companionship, are here to help us in our everyday and routine life. These robots are different to the previous family of robots that were used in factories and static environments. These new robots are social robots that need to be able to adapt to our environment by themselves and to learn from their own experiences. In this paper, we contribute to the creation of robots with a high degree of autonomy, which is a must for social robots. We try to create an algorithm capable of autonomous exploration in and adaptation to unknown environments and implement it in a simulated robot. We go further than a simulation and implement our algorithm in a real robot, in which our sensor fusion method is able to overcome real-world noise and perform robust exploration.

摘要

近年来,机器学习(以及因此产生的人工智能)取得了相当大的进展。结果,不同形状和用途的机器人已经进入了我们的日常生活。这些机器人的开发目标是为了人类的陪伴,旨在帮助我们应对日常和例行的生活。这些机器人与之前在工厂和静态环境中使用的机器人家族不同。这些新型机器人是社交机器人,它们需要能够自行适应环境,并从自己的经验中学习。在本文中,我们致力于创建具有高度自主性的机器人,这是社交机器人的必备条件。我们尝试创建一种能够在未知环境中自主探索和适应的算法,并将其实现在模拟机器人中。我们不仅仅停留在模拟阶段,而是将我们的算法实现在一个真实的机器人中,在这个机器人中,我们的传感器融合方法能够克服现实世界中的噪声并进行稳健的探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bed/6210925/7a89457d13e3/sensors-18-03575-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验