School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China.
College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Sensors (Basel). 2018 Oct 22;18(10):3579. doi: 10.3390/s18103579.
In the last decade, fingerprinting localization using wireless local area network (WLAN) has been paid lots of attention. However, this method needs to establish a database called radio map in the off-line stage, which is a labor-intensive and time-consuming process. To save the radio map establishment cost and improve localization performance, in this paper, we first propose a Voronoi diagram and crowdsourcing-based radio map interpolation method. The interpolation method optimizes propagation model parameters for each Voronoi cell using the received signal strength (RSS) and location coordinates of crowdsourcing points and estimates the RSS samples of interpolation points with the optimized propagation model parameters to establish a new radio map. Then a general regression neural network (GRNN) is employed to fuse the new and original radio maps established through interpolation and manual operation, respectively, and also used as a fingerprinting localization algorithm to compute localization coordinates. The experimental results demonstrate that our proposed GRNN fingerprinting localization system with the fused radio map is able to considerably improve the localization performance.
在过去的十年中,利用无线局域网 (WLAN) 进行指纹定位已经引起了广泛关注。然而,这种方法需要在离线阶段建立一个称为无线电地图的数据库,这是一个劳动密集型和耗时的过程。为了节省无线电地图建立成本并提高定位性能,本文首先提出了一种基于 Voronoi 图和众包的无线电地图插值方法。该插值方法使用接收信号强度 (RSS) 和众包点的位置坐标,针对每个 Voronoi 单元优化传播模型参数,并使用优化后的传播模型参数来估计插值点的 RSS 样本,从而建立新的无线电地图。然后,一般回归神经网络 (GRNN) 被用于融合通过插值和手动操作建立的新的和原始的无线电地图,并作为指纹定位算法来计算定位坐标。实验结果表明,我们提出的具有融合无线电地图的 GRNN 指纹定位系统能够显著提高定位性能。