Suppr超能文献

肌肉线粒体在瘦素和肥胖人群急性运动后的三磷酸腺苷生成。

Adenosine Triphosphate Production of Muscle Mitochondria after Acute Exercise in Lean and Obese Humans.

机构信息

Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ.

College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ.

出版信息

Med Sci Sports Exerc. 2019 Mar;51(3):445-453. doi: 10.1249/MSS.0000000000001812.

Abstract

INTRODUCTION

Current evidence indicates mitochondrial dysfunction in humans with obesity. Acute exercise appears to enhance mitochondrial function in the muscle of nonobese humans, but its effects on mitochondrial function in muscle of humans with obesity are not known. We sought to determine whether acute aerobic exercise stimulates mitochondrial function in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in humans with obesity.

METHODS

We assessed maximal adenosine triphosphate production rate (MAPR) and citrate synthase (CS) activity in isolated SS and IMF mitochondria from subjects with body mass index < 27 kg·m (median age, 25 yr; interquartile range, 22-39 yr) and subjects with body mass index > 32 kg·m (median age, 29 yr; interquartile range, 20-39 yr) before and 3 h after a 45-min cycling exercise at an intensity corresponding to 65% HR reserve. The SS and IMF mitochondria were isolated from muscle biopsies using differential centrifugation. Maximal adenosine triphosphate production rate and CS activities were determined using luciferase-based and spectrophotometric enzyme-based assays, respectively.

RESULTS

Exercise increased MAPR in IMF mitochondria in both nonobese subjects and subjects with obesity (P < 0.05), but CS-specific activity did not change in either group (P > 0.05). Exercise increased MAPR supported by complex II in SS mitochondria, in both groups (P < 0.05), but MAPR supported by complex I or palmitate did not increase by exercise in the subjects with obesity (P > 0.05). Citrate synthase-specific activity increased in SS mitochondria in response to exercise only in nonobese subjects (P < 0.05).

CONCLUSIONS

In nonobese humans, acute aerobic exercise increases MAPR in both SS and IMF mitochondria. In humans with obesity, the exercise increases MAPR in IMF mitochondria, but this response is less evident in SS mitochondria.

摘要

简介

目前的证据表明,肥胖人群的线粒体功能存在障碍。急性运动似乎可以增强非肥胖人群肌肉中的线粒体功能,但它对肥胖人群肌肉中线粒体功能的影响尚不清楚。我们试图确定急性有氧运动是否可以刺激肥胖人群的骨骼肌肌小节下(SS)和肌纤维间(IMF)线粒体的线粒体功能。

方法

我们评估了体质量指数(BMI)<27 kg·m(中位数年龄,25 岁;四分位间距,22-39 岁)和 BMI>32 kg·m(中位数年龄,29 岁;四分位间距,20-39 岁)的受试者在进行 45 分钟的自行车运动后 3 小时,分别在 SS 和 IMF 线粒体中评估最大三磷酸腺苷(ATP)生成率(MAPR)和柠檬酸合酶(CS)活性。使用差速离心法从肌肉活检中分离 SS 和 IMF 线粒体。使用基于荧光素酶的和分光光度酶法分别测定最大 ATP 生成率和 CS 活性。

结果

运动增加了非肥胖受试者和肥胖受试者 IMF 线粒体中的 MAPR(P<0.05),但两组 CS 比活性均无变化(P>0.05)。运动增加了 SS 线粒体中复合物 II 支持的 MAPR,在两组中均有增加(P<0.05),但肥胖受试者中复合物 I 或棕榈酸支持的 MAPR 没有因运动而增加(P>0.05)。只有在非肥胖受试者中,SS 线粒体中的 CS 比活性才会因运动而增加(P<0.05)。

结论

在非肥胖人群中,急性有氧运动可增加 SS 和 IMF 线粒体中的 MAPR。在肥胖人群中,运动增加了 IMF 线粒体中的 MAPR,但在 SS 线粒体中的反应不太明显。

相似文献

1
Adenosine Triphosphate Production of Muscle Mitochondria after Acute Exercise in Lean and Obese Humans.
Med Sci Sports Exerc. 2019 Mar;51(3):445-453. doi: 10.1249/MSS.0000000000001812.
2
Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.
J Clin Endocrinol Metab. 2017 Dec 1;102(12):4515-4525. doi: 10.1210/jc.2017-01201.
5
Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism.
Am J Physiol Cell Physiol. 2005 May;288(5):C1074-82. doi: 10.1152/ajpcell.00391.2004. Epub 2005 Jan 12.
6
Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status.
Acta Physiol Scand. 1997 Nov;161(3):345-53. doi: 10.1046/j.1365-201X.1997.00222.x.
7
The effect of branched chain amino acids on skeletal muscle mitochondrial function in young and elderly adults.
J Clin Endocrinol Metab. 2010 Feb;95(2):894-902. doi: 10.1210/jc.2009-1822. Epub 2009 Dec 18.
8
In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E738-47. doi: 10.1152/ajpendo.90896.2008. Epub 2009 Jan 13.
9
Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E85-91. doi: 10.1152/ajpendo.00237.2003. Epub 2003 Sep 3.

引用本文的文献

本文引用的文献

1
Lower Fasted-State but Greater Increase in Muscle Protein Synthesis in Response to Elevated Plasma Amino Acids in Obesity.
Obesity (Silver Spring). 2018 Jul;26(7):1179-1187. doi: 10.1002/oby.22213. Epub 2018 Jun 12.
3
Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.
J Clin Endocrinol Metab. 2017 Dec 1;102(12):4515-4525. doi: 10.1210/jc.2017-01201.
4
SIRT3 deacetylated and increased citrate synthase activity in PD model.
Biochem Biophys Res Commun. 2017 Mar 18;484(4):767-773. doi: 10.1016/j.bbrc.2017.01.163. Epub 2017 Feb 2.
5
7
Mitochondrial dysfunction and insulin resistance: an update.
Endocr Connect. 2015 Mar;4(1):R1-R15. doi: 10.1530/EC-14-0092. Epub 2014 Nov 10.
8
Mitochondrial response to nutrient availability and its role in metabolic disease.
EMBO Mol Med. 2014 May;6(5):580-9. doi: 10.1002/emmm.201303782.
9
Using Effect Size-or Why the P Value Is Not Enough.
J Grad Med Educ. 2012 Sep;4(3):279-82. doi: 10.4300/JGME-D-12-00156.1.
10
Mitochondrial plasticity in obesity and diabetes mellitus.
Antioxid Redox Signal. 2013 Jul 20;19(3):258-68. doi: 10.1089/ars.2012.4910. Epub 2012 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验