Flórez Alvaro J, Molenberghs Geert, Verbeke Geert, Abad Ariel Alonso
a I-BioStat, Universiteit Hasselt , Diepenbeek , Belgium.
b I-BioStat, KU Leuven , Leuven , Belgium.
J Biopharm Stat. 2019;29(2):318-332. doi: 10.1080/10543406.2018.1535504. Epub 2018 Oct 26.
Estimating complex linear mixed models using an iterative full maximum likelihood estimator can be cumbersome in some cases. With small and unbalanced datasets, convergence problems are common. Also, for large datasets, iterative procedures can be computationally prohibitive. To overcome these computational issues, an unbiased two-stage closed-form estimator for the multivariate linear mixed model is proposed. It is rooted in pseudo-likelihood-based split-sample methodology and useful, for example, when evaluating normally distributed endpoints in a meta-analytic context. However, applications go well beyond this framework. Its statistical and computational performance is assessed via simulation. The method is applied to a study in schizophrenia.
在某些情况下,使用迭代完全最大似然估计器来估计复杂线性混合模型可能会很麻烦。对于小的和不平衡的数据集,收敛问题很常见。此外,对于大型数据集,迭代过程在计算上可能令人望而却步。为了克服这些计算问题,提出了一种用于多元线性混合模型的无偏两阶段封闭形式估计器。它基于基于伪似然的拆分样本方法,例如在元分析背景下评估正态分布的终点时很有用。然而,其应用远远超出了这个框架。通过模拟评估其统计和计算性能。该方法应用于一项精神分裂症研究。