Suppr超能文献

基于合成视觉技术的自主野火定位系统面临的挑战。

Challenges of an Autonomous Wildfire Geolocation System Based on Synthetic Vision Technology.

机构信息

Instituto para el Desarrollo Tecnologico y la Innovacion en Comunicaciones (IDeTIC) Universidad de Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain.

出版信息

Sensors (Basel). 2018 Oct 25;18(11):3631. doi: 10.3390/s18113631.

Abstract

Thermographic imaging has been the preferred technology for the detection and tracking of wildfires for many years. Thermographic cameras provide some very important advantages, such as the ability to remotely detect hotspots which could potentially turn into wildfires if the appropriate conditions are met. Also, they can serve as a key preventive method, especially when the 30-30-30 rule is met, which describes a situation where the ambient temperature is higher than 30 ∘ C, the relative humidity is lower than 30%, and the wind speed is higher than 30 km/h. Under these circumstances, the likelihood of a wildfire outburst is quite high, and its effects can be catastrophic due to the high-speed winds and dry conditions. If this sort of scenario actually occurs, every possible technological advantage shall be used by firefighting teams to enable the rapid and efficient coordination of their response teams and to control the wildfire following a safe and well-planned strategy. However, most of the early detection methods for wildfires, such as the aforementioned thermographic cameras, lack a sufficient level of automation and usually rely on human interaction, imposing high degrees of subjectivity and latency. This is especially critical when a high volume of data is required in real time to correctly support decision-making scenarios during the wildfire suppression tasks. The present paper addresses this situation by analyzing the challenges faced by a fully autonomous wildfire detection and a tracking system containing a fully automated wildfire georeferencing system based on synthetic vision technology. Such a tool would provide firefighting teams with a solution capable of continuously surveilling a particular area and completely autonomously identifying and providing georeferenced information on current or potential wildfires in real time.

摘要

多年来,热成像技术一直是检测和跟踪野火的首选技术。热成像摄像机提供了一些非常重要的优势,例如能够远程检测热点,如果满足适当的条件,这些热点有可能发展成野火。此外,它们可以作为一种关键的预防方法,特别是当满足 30-30-30 规则时,该规则描述了环境温度高于 30 ∘ C、相对湿度低于 30%且风速高于 30 km/h 的情况。在这些情况下,野火爆发的可能性相当高,由于高速风和干燥条件,其影响可能是灾难性的。如果这种情况真的发生,消防队伍将利用所有可能的技术优势,使他们的应急响应队伍能够迅速有效地协调,并根据安全和精心规划的策略控制野火。然而,大多数野火早期检测方法,如前面提到的热成像摄像机,缺乏足够的自动化水平,通常依赖于人工交互,这带来了高度的主观性和延迟。当实时需要大量数据来正确支持野火抑制任务中的决策场景时,这一点尤其关键。本文通过分析完全自主的野火检测和跟踪系统所面临的挑战来解决这一问题,该系统包含一个基于合成视觉技术的全自动野火地理参考系统。这样的工具将为消防队伍提供一个能够持续监测特定区域并完全自主识别和实时提供当前或潜在野火地理参考信息的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9caf/6263383/316dbe69eb01/sensors-18-03631-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验