Suppr超能文献

机器学习方法和合成数据生成技术预测大型野火。

Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires.

机构信息

Department of Graphic Engineering and Geomatics, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain.

Centro de Investigaciones Aplicadas al Desarrollo Agroforestal, Campus de Rabanales, 14071 Córdoba, Spain.

出版信息

Sensors (Basel). 2021 May 26;21(11):3694. doi: 10.3390/s21113694.

Abstract

Wildfires are becoming more frequent in different parts of the globe, and the ability to predict when and where they will occur is a complex process. Identifying wildfire events with high probability of becoming a large wildfire is an important task for supporting initial attack planning. Different methods, including those that are physics-based, statistical, and based on machine learning (ML) are used in wildfire analysis. Among the whole, those based on machine learning are relatively novel. In addition, because the number of wildfires is much greater than the number of large wildfires, the dataset to be used in a ML model is imbalanced, resulting in overfitting or underfitting the results. In this manuscript, we propose to generate synthetic data from variables of interest together with ML models for the prediction of large wildfires. Specifically, five synthetic data generation methods have been evaluated, and their results are analyzed with four ML methods. The results yield an improvement in the prediction power when synthetic data are used, offering a new method to be taken into account in Decision Support Systems (DSS) when managing wildfires.

摘要

野火在全球不同地区变得越来越频繁,预测它们何时何地发生是一个复杂的过程。识别极有可能发展成大型野火的野火事件是支持初始攻击计划的重要任务。不同的方法,包括基于物理、统计和基于机器学习 (ML) 的方法,都被用于野火分析。在所有方法中,基于机器学习的方法相对较新。此外,由于野火的数量远远多于大型野火的数量,因此在 ML 模型中使用的数据集是不平衡的,导致结果过拟合或欠拟合。在本文中,我们提出从感兴趣的变量生成合成数据,并结合 ML 模型来预测大型野火。具体来说,评估了五种合成数据生成方法,并使用四种 ML 方法分析了它们的结果。当使用合成数据时,预测能力得到了提高,为管理野火时决策支持系统 (DSS) 提供了一种新的考虑方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb20/8198242/df411f236c52/sensors-21-03694-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验