Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK.
Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK; Department of Cognitive Science, Central European University, Budapest, Hungary.
Trends Neurosci. 2018 Nov;41(11):767-770. doi: 10.1016/j.tins.2018.09.003.
In 2006, Ma et al. (Nat. Neurosci. 1006;9:1432-1438) presented an elegant theory for how populations of neurons might represent uncertainty to perform Bayesian inference. Critically, according to this theory, neural variability is no longer a nuisance, but rather a vital part of how the brain encodes probability distributions and performs computations with them.
2006 年,马等人(Nat. Neurosci. 1006;9:1432-1438)提出了一个优雅的理论,阐述了神经元群体如何代表不确定性以进行贝叶斯推理。关键的是,根据这一理论,神经变异性不再是一个麻烦,而是大脑如何对概率分布进行编码并对其进行计算的重要组成部分。