Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK; Lobachevsky University, Nizhni Novgorod, Russia.
Lobachevsky University, Nizhni Novgorod, Russia; Instituto de Matemática Interdisciplinar, Faculty of Mathematics, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
Phys Life Rev. 2019 Jul;29:55-88. doi: 10.1016/j.plrev.2018.09.005. Epub 2018 Oct 2.
Complexity is an indisputable, well-known, and broadly accepted feature of the brain. Despite the apparently obvious and widely-spread consensus on the brain complexity, sprouts of the single neuron revolution emerged in neuroscience in the 1970s. They brought many unexpected discoveries, including grandmother or concept cells and sparse coding of information in the brain. In machine learning for a long time, the famous curse of dimensionality seemed to be an unsolvable problem. Nevertheless, the idea of the blessing of dimensionality becomes gradually more and more popular. Ensembles of non-interacting or weakly interacting simple units prove to be an effective tool for solving essentially multidimensional and apparently incomprehensible problems. This approach is especially useful for one-shot (non-iterative) correction of errors in large legacy artificial intelligence systems and when the complete re-training is impossible or too expensive. These simplicity revolutions in the era of complexity have deep fundamental reasons grounded in geometry of multidimensional data spaces. To explore and understand these reasons we revisit the background ideas of statistical physics. In the course of the 20th century they were developed into the concentration of measure theory. The Gibbs equivalence of ensembles with further generalizations shows that the data in high-dimensional spaces are concentrated near shells of smaller dimension. New stochastic separation theorems reveal the fine structure of the data clouds. We review and analyse biological, physical, and mathematical problems at the core of the fundamental question: how can high-dimensional brain organise reliable and fast learning in high-dimensional world of data by simple tools? To meet this challenge, we outline and setup a framework based on statistical physics of data. Two critical applications are reviewed to exemplify the approach: one-shot correction of errors in intellectual systems and emergence of static and associative memories in ensembles of single neurons. Error correctors should be simple; not damage the existing skills of the system; allow fast non-iterative learning and correction of new mistakes without destroying the previous fixes. All these demands can be satisfied by new tools based on the concentration of measure phenomena and stochastic separation theory. We show how a simple enough functional neuronal model is capable of explaining: i) the extreme selectivity of single neurons to the information content of high-dimensional data, ii) simultaneous separation of several uncorrelated informational items from a large set of stimuli, and iii) dynamic learning of new items by associating them with already "known" ones. These results constitute a basis for organisation of complex memories in ensembles of single neurons.
大脑的复杂性是一个不容置疑、众所周知且被广泛接受的特征。尽管大脑复杂性的观点显然显而易见且得到广泛传播,但 20 世纪 70 年代神经科学中出现了单细胞革命的萌芽。它们带来了许多意想不到的发现,包括祖母细胞和大脑中信息的稀疏编码。在机器学习领域,著名的维度诅咒似乎是一个无法解决的问题。然而,维度的祝福的概念变得越来越流行。非相互作用或弱相互作用的简单单元的集合被证明是解决本质上多维且看似难以理解的问题的有效工具。这种方法对于一次性(非迭代)纠正大型遗留人工智能系统中的错误非常有用,并且在完全重新训练是不可能或太昂贵的情况下也是如此。在复杂性时代,这些简单性革命有其深刻的根本原因,这些原因根植于多维数据空间的几何形状中。为了探索和理解这些原因,我们重新审视统计物理学的背景思想。在 20 世纪,它们发展成为测度集中理论。具有进一步推广的集合的吉布斯等价性表明,高维空间中的数据集中在较小维数的壳附近。新的随机分离定理揭示了数据云的精细结构。我们回顾和分析了生物学、物理学和数学问题,这些问题是核心问题的基础:高度复杂的大脑如何通过简单的工具在高维数据世界中组织可靠和快速的学习?为了应对这一挑战,我们基于数据统计物理学概述并建立了一个框架。我们回顾了两个关键应用,以举例说明该方法:一次性纠正智能系统中的错误以及单神经元集合中静态和联想记忆的出现。纠错器应该简单;不会损坏系统现有的技能;允许快速非迭代学习和纠正新错误,而不会破坏以前的修复。所有这些需求都可以通过基于测度集中现象和随机分离理论的新工具来满足。我们展示了一个足够简单的功能神经元模型如何能够解释:i)单个神经元对高维数据的信息内容的极端选择性,ii)从大量刺激中同时分离几个不相关的信息项,以及 iii)通过将新项与已经“已知”的项关联来动态学习新项。这些结果为单神经元集合中的复杂记忆组织奠定了基础。