Suppr超能文献

甲状腺超声图像分析的最优卷积神经网络条件研究。

Investigation of optimal convolutional neural network conditions for thyroid ultrasound image analysis.

机构信息

Department of Surgery, Gachon University College of Medicine, Gil Medical Center, Inchon, Korea.

Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea.

出版信息

Sci Rep. 2023 Jan 24;13(1):1360. doi: 10.1038/s41598-023-28001-8.

Abstract

Neural network models have been used to analyze thyroid ultrasound (US) images and stratify malignancy risk of the thyroid nodules. We investigated the optimal neural network condition for thyroid US image analysis. We compared scratch and transfer learning models, performed stress tests in 10% increments, and compared the performance of three threshold values. All validation results indicated superiority of the transfer learning model over the scratch model. Stress test indicated that training the algorithm using 3902 images (70%) resulted in a performance which was similar to the full dataset (5575). Threshold 0.3 yielded high sensitivity (1% false negative) and low specificity (72% false positive), while 0.7 gave low sensitivity (22% false negative) and high specificity (23% false positive). Here we showed that transfer learning was more effective than scratch learning in terms of area under curve, sensitivity, specificity and negative/positive predictive value, that about 3900 images were minimally required to demonstrate an acceptable performance, and that algorithm performance can be customized according to the population characteristics by adjusting threshold value.

摘要

神经网络模型已被用于分析甲状腺超声(US)图像,并对甲状腺结节的恶性风险进行分层。我们研究了甲状腺 US 图像分析的最佳神经网络条件。我们比较了从零开始学习和迁移学习模型,以 10%的增量进行压力测试,并比较了三个阈值的性能。所有验证结果均表明,迁移学习模型优于从零开始学习模型。压力测试表明,使用 3902 张图像(70%)训练算法可达到与全数据集(5575 张)相似的性能。阈值 0.3 具有较高的敏感性(1%假阴性)和较低的特异性(72%假阳性),而阈值 0.7 具有较低的敏感性(22%假阴性)和较高的特异性(23%假阳性)。本研究表明,在曲线下面积、敏感性、特异性、阴性/阳性预测值方面,迁移学习优于从零开始学习,大约需要 3900 张图像才能达到可接受的性能,并且可以通过调整阈值值根据人群特征定制算法性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dea4/9873643/e20f738eecfb/41598_2023_28001_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验