Suppr超能文献

利用差分离子迁移谱技术对电外科烟雾中的乳腺肿瘤进行识别。

Identification of breast tumors from diathermy smoke by differential ion mobility spectrometry.

机构信息

Surgery, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland.

出版信息

Eur J Surg Oncol. 2019 Feb;45(2):141-146. doi: 10.1016/j.ejso.2018.09.005. Epub 2018 Oct 15.

Abstract

INTRODUCTION

Breast cancer is the most frequent cancer in women worldwide. The primary treatment is breast-conserving surgery or mastectomy with an adequate clearance margin. Diathermy blade is used extensively in breast-conserving surgery. Surgical smoke produced as a side product has cancer-specific molecular features. Differential mobility spectrometry (DMS) is a rapid and affordable technology for analysis of complex gas mixtures. In our study we examined surgical smoke from malignant and benign breast tissue created with a diathermy blade using DMS.

MATERIAL AND METHODS

Punch biopsies of 4 mm diameter from breast cancer surgical specimens were taken during gross dissection of fresh surgical specimen and placed in a well plate. The measurement system is a custom-built device called automatic tissue analysis system (ATAS) based on a DMS sensor. Each specimen was incised with a diathermy blade and the surgical smoke was analyzed.

RESULTS

We examined 106 carcinoma samples from 21 malignant breast tumors. Benign samples (n = 198) included macroscopically normal mammary gland (n = 82), adipose tissue (n = 88) and vascular tissue (n = 28). The classification accuracy when comparing malignant samples to all benign samples was 87%. The sensitivity was 80% and the specificity was 90%. The classification accuracy of carcinomas to ductal and lobular was 94%, 47%, respectively.

CONCLUSIONS

Benign and malignant breast tissue can be identified with ATAS. These results lay foundation for intraoperative margin assessment with DMS from surgical smoke.

摘要

简介

乳腺癌是全球女性最常见的癌症。主要治疗方法是保乳手术或乳房切除术,并保证有足够的清除边缘。热刀广泛应用于保乳手术中。作为副产品产生的手术烟雾具有特定的癌症分子特征。差分迁移率谱(DMS)是一种快速且经济实惠的分析复杂气体混合物的技术。在我们的研究中,我们使用 DMS 检查了热刀切除的良性和恶性乳腺组织产生的手术烟雾。

材料与方法

在新鲜手术标本的大体解剖过程中,从乳腺癌手术标本上切取 4mm 直径的穿刺活检,并将其放置在培养皿中。测量系统是一种称为自动组织分析系统(ATAS)的定制设备,基于 DMS 传感器。每个标本均用热刀切开,并对手术烟雾进行分析。

结果

我们检查了 21 个恶性乳腺肿瘤中的 106 个癌样本。良性样本(n=198)包括宏观正常的乳腺(n=82)、脂肪组织(n=88)和血管组织(n=28)。将恶性样本与所有良性样本进行比较时的分类准确率为 87%。敏感性为 80%,特异性为 90%。将癌样本分类为导管和小叶的准确率分别为 94%和 47%。

结论

ATAS 可识别良性和恶性乳腺组织。这些结果为 DMS 从手术烟雾中进行术中边缘评估奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验