Suppr超能文献

使用超高分辨率光学相干断层扫描技术对人类乳腺癌图像进行可视化和组织分类

Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.

作者信息

Yao Xinwen, Gan Yu, Chang Ernest, Hibshoosh Hanina, Feldman Sheldon, Hendon Christine

机构信息

Departmentof Electrical Engineering, Columbia University, New York, New York, 10027.

Columbia University College of Physicians and Surgeons, New York, New York, 10027.

出版信息

Lasers Surg Med. 2017 Mar;49(3):258-269. doi: 10.1002/lsm.22654. Epub 2017 Mar 6.

Abstract

BACKGROUND AND OBJECTIVE

Breast cancer is one of the most common cancers, and recognized as the third leading cause of mortality in women. Optical coherence tomography (OCT) enables three dimensional visualization of biological tissue with micrometer level resolution at high speed, and can play an important role in early diagnosis and treatment guidance of breast cancer. In particular, ultra-high resolution (UHR) OCT provides images with better histological correlation. This paper compared UHR OCT performance with standard OCT in breast cancer imaging qualitatively and quantitatively. Automatic tissue classification algorithms were used to automatically detect invasive ductal carcinoma in ex vivo human breast tissue.

STUDY DESIGN/MATERIALS AND METHODS: Human breast tissues, including non-neoplastic/normal tissues from breast reduction and tumor samples from mastectomy specimens, were excised from patients at Columbia University Medical Center. The tissue specimens were imaged by two spectral domain OCT systems at different wavelengths: a home-built ultra-high resolution (UHR) OCT system at 800 nm (measured as 2.72 μm axial and 5.52 μm lateral) and a commercial OCT system at 1,300 nm with standard resolution (measured as 6.5 μm axial and 15 μm lateral), and their imaging performances were analyzed qualitatively. Using regional features derived from OCT images produced by the two systems, we developed an automated classification algorithm based on relevance vector machine (RVM) to differentiate hollow-structured adipose tissue against solid tissue. We further developed B-scan based features for RVM to classify invasive ductal carcinoma (IDC) against normal fibrous stroma tissue among OCT datasets produced by the two systems. For adipose classification, 32 UHR OCT B-scans from 9 normal specimens, and 28 standard OCT B-scans from 6 normal and 4 IDC specimens were employed. For IDC classification, 152 UHR OCT B-scans from 6 normal and 13 IDC specimens, and 104 standard OCT B-scans from 5 normal and 8 IDC specimens were employed.

RESULTS

We have demonstrated that UHR OCT images can produce images with better feature delineation compared with images produced by 1,300 nm OCT system. UHR OCT images of a variety of tissue types found in human breast tissue were presented. With a limited number of datasets, we showed that both OCT systems can achieve a good accuracy in identifying adipose tissue. Classification in UHR OCT images achieved higher sensitivity (94%) and specificity (93%) of adipose tissue than the sensitivity (91%) and specificity (76%) in 1,300 nm OCT images. In IDC classification, similarly, we achieved better results with UHR OCT images, featured an overall accuracy of 84%, sensitivity of 89% and specificity of 71% in this preliminary study.

CONCLUSION

In this study, we provided UHR OCT images of different normal and malignant breast tissue types, and qualitatively and quantitatively studied the texture and optical features from OCT images of human breast tissue at different resolutions. We developed an automated approach to differentiate adipose tissue, fibrous stroma, and IDC within human breast tissues. Our work may open the door toward automatic intraoperative OCT evaluation of early-stage breast cancer. Lasers Surg. Med. 49:258-269, 2017. © 2017 Wiley Periodicals, Inc.

摘要

背景与目的

乳腺癌是最常见的癌症之一,被认为是女性死亡的第三大主要原因。光学相干断层扫描(OCT)能够以微米级分辨率高速对生物组织进行三维可视化,在乳腺癌的早期诊断和治疗指导中可发挥重要作用。特别是,超高分辨率(UHR)OCT提供的图像具有更好的组织学相关性。本文对UHR OCT和标准OCT在乳腺癌成像中的性能进行了定性和定量比较。使用自动组织分类算法在离体人乳腺组织中自动检测浸润性导管癌。

研究设计/材料与方法:从哥伦比亚大学医学中心的患者身上切除人类乳腺组织,包括来自乳房缩小术的非肿瘤/正常组织以及来自乳房切除术标本的肿瘤样本。组织标本由两个不同波长的光谱域OCT系统成像:一个自制的800nm超高分辨率(UHR)OCT系统(轴向测量为2.72μm,横向测量为5.52μm)和一个1300nm的具有标准分辨率的商用OCT系统(轴向测量为6.5μm,横向测量为15μm),并对它们的成像性能进行了定性分析。利用两个系统产生的OCT图像的区域特征,我们开发了一种基于相关向量机(RVM)的自动分类算法,以区分中空结构的脂肪组织和实体组织。我们进一步为RVM开发了基于B扫描的特征,以在两个系统产生的OCT数据集中将浸润性导管癌(IDC)与正常纤维基质组织区分开来。对于脂肪分类,使用了来自9个正常标本的32个UHR OCT B扫描,以及来自6个正常和4个IDC标本的28个标准OCT B扫描。对于IDC分类,使用了来自6个正常和13个IDC标本的152个UHR OCT B扫描,以及来自5个正常和8个IDC标本的104个标准OCT B扫描。

结果

我们已经证明,与1300nm OCT系统产生的图像相比,UHR OCT图像能够产生具有更好特征描绘的图像。展示了在人类乳腺组织中发现的各种组织类型的UHR OCT图像。在数据集数量有限的情况下,我们表明两个OCT系统在识别脂肪组织方面都能达到良好的准确性。UHR OCT图像中脂肪组织分类的灵敏度(94%)和特异性(93%)高于1300nm OCT图像中的灵敏度(91%)和特异性(76%)。同样,在IDC分类中,我们使用UHR OCT图像取得了更好的结果,在这项初步研究中总体准确率为84%,灵敏度为89%,特异性为71%。

结论

在本研究中,我们提供了不同正常和恶性乳腺组织类型的UHR OCT图像,并定性和定量地研究了不同分辨率下人类乳腺组织OCT图像的纹理和光学特征。我们开发了一种自动方法来区分人类乳腺组织中的脂肪组织、纤维基质和IDC。我们的工作可能为早期乳腺癌的术中OCT自动评估打开大门。《激光外科与医学》49:258 - 269, 2017。©2017威利期刊公司

相似文献

引用本文的文献

本文引用的文献

8
Assessment of breast pathologies using nonlinear microscopy.使用非线性显微镜评估乳腺病变
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15304-9. doi: 10.1073/pnas.1416955111. Epub 2014 Oct 13.
9
Exploring breast with therapeutic ductoscopy.通过治疗性乳管镜检查探索乳房。
Gland Surg. 2014 May;3(2):136-41. doi: 10.3978/j.issn.2227-684X.2014.05.01.
10
Polarization-sensitive multimodal imaging for detecting breast cancer.偏振敏感多模态成像用于乳腺癌检测。
Cancer Res. 2014 Sep 1;74(17):4685-93. doi: 10.1158/0008-5472.CAN-13-2411. Epub 2014 Jun 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验