Suppr超能文献

采用差分迁移谱法的激光解吸组织成像

Laser desorption tissue imaging with Differential Mobility Spectrometry.

作者信息

Lepomäki Maiju, Anttalainen Anna, Vuorinen Artturi, Tolonen Teemu, Kontunen Anton, Karjalainen Markus, Vehkaoja Antti, Roine Antti, Oksala Niku

机构信息

Surgery, Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Building, Arvo Ylpön katu 34, 33520 Tampere, Finland; Department of Pathology, Fimlab Laboratories, Arvo Ylpön katu 4, FI-33520 Tampere, Finland.

Olfactomics Ltd, Kampusareena, Korkeakoulunkatu 7, FI-33720 Tampere, Finland; Sensor Technology and Biomeasurements, Faculty of Medicine and Health Technology, Tampere University, Hervanta Campus, Sähkötalo Building, Korkeakoulunkatu 3, FI-33720 Tampere, Finland.

出版信息

Exp Mol Pathol. 2022 Apr;125:104759. doi: 10.1016/j.yexmp.2022.104759. Epub 2022 Mar 23.

Abstract

Pathological gross examination of breast carcinoma samples is sometimes laborious. A tissue pre-mapping method could indicate neoplastic areas to the pathologist and enable focused sampling. Differential Mobility Spectrometry (DMS) is a rapid and affordable technology for complex gas mixture analysis. We present an automated tissue laser analysis system for imaging approaches (iATLAS), which utilizes a computer-controlled laser evaporator unit coupled with a DMS gas analyzer. The system is demonstrated in the classification of porcine tissue samples and three human breast carcinomas. Tissue samples from eighteen landrace pigs were classified with the system based on a pre-designed matrix (spatial resolution 1-3 mm). The smoke samples were analyzed with DMS, and tissue classification was performed with several machine learning approaches. Porcine skeletal muscle (n = 1030), adipose tissue (n = 1329), normal breast tissue (n = 258), bone (n = 680), and liver (n = 264) were identified with 86% cross-validation (CV) accuracy with a convolutional neural network (CNN) model. Further, a panel tissue that comprised all five tissue types was applied as an independent validation dataset. In this test, 82% classification accuracy with CNN was achieved. An analogous procedure was applied to demonstrate the feasibility of iATLAS in breast cancer imaging according to 1) macroscopically and 2) microscopically annotated data with 10-fold CV and SVM (radial kernel). We reached a classification accuracy of 94%, specificity of 94%, and sensitivity of 93% with the macroscopically annotated data from three breast cancer specimens. The microscopic annotation was applicable to two specimens. For the first specimen, the classification accuracy was 84% (specificity 88% and sensitivity 77%). For the second, the classification accuracy was 72% (specificity 88% and sensitivity 24%). This study presents a promising method for automated tissue imaging in an animal model and lays foundation for breast cancer imaging.

摘要

乳腺癌样本的病理大体检查有时很费力。一种组织预映射方法可以向病理学家指示肿瘤区域,并实现靶向采样。差分迁移谱(DMS)是一种用于复杂气体混合物分析的快速且经济实惠的技术。我们提出了一种用于成像方法的自动组织激光分析系统(iATLAS),它利用一个计算机控制的激光蒸发器单元与一个DMS气体分析仪相结合。该系统在猪组织样本和三个人类乳腺癌的分类中得到了验证。基于预先设计的矩阵(空间分辨率为1 - 3毫米),使用该系统对来自18头长白猪的组织样本进行了分类。用DMS分析烟雾样本,并采用几种机器学习方法进行组织分类。使用卷积神经网络(CNN)模型,猪骨骼肌(n = 1030)、脂肪组织(n = 1329)、正常乳腺组织(n = 258)、骨骼(n = 680)和肝脏(n = 264)的交叉验证(CV)准确率为86%。此外,将包含所有五种组织类型的一组组织用作独立验证数据集。在该测试中,CNN的分类准确率达到了82%。根据1)宏观标注数据和2)微观标注数据,采用10倍交叉验证和支持向量机(径向核),应用类似程序证明iATLAS在乳腺癌成像中的可行性。对于来自三个乳腺癌标本的宏观标注数据,我们达到了94%的分类准确率、94%的特异性和93%的敏感性。微观标注适用于两个标本。对于第一个标本,分类准确率为84%(特异性88%,敏感性77%)。对于第二个标本,分类准确率为72%(特异性88%,敏感性24%)。本研究提出了一种在动物模型中进行自动组织成像的有前景的方法,并为乳腺癌成像奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验