From the Department of Biochemistry and Molecular Biology.
the Centre for Blood Research, and.
J Biol Chem. 2018 Dec 21;293(51):19854-19865. doi: 10.1074/jbc.RA118.004952. Epub 2018 Oct 26.
Methicillin-resistant (MRSA) causes serious community-acquired and nosocomial infections worldwide. MRSA strains are resistant to a variety of antibiotics, including the classic penicillin and cephalosporin classes of β-lactams, making them intractable to treatment. Although β-lactam resistance in MRSA has been ascribed to the acquisition and activity of penicillin-binding protein 2a (PBP2a, encoded by ), it has recently been observed that resistance can also be mediated by penicillin-binding protein 4 (PBP4). Previously, we have shown that broad-spectrum β-lactam resistance can arise following serial passaging of a -negative COL strain of creating the CRB strain. This strain has two missense mutations in and a mutation in the promoter, both of which play an instrumental role in β-lactam resistance. To better understand PBP4's role in resistance, here we have characterized its kinetics and structure with clinically relevant β-lactam antibiotics. We present the first crystallographic PBP4 structures of apo and acyl-enzyme intermediate forms complexed with three late-generation β-lactam antibiotics: ceftobiprole, ceftaroline, and nafcillin. In parallel, we characterized the structural and kinetic effects of the PBP4 mutations present in the CRB strain. Localized within the transpeptidase active-site cleft, the two substitutions appear to have different effects depending on the drug. With ceftobiprole, the missense mutations impaired the value 150-fold, decreasing the proportion of inhibited PBP4. However, ceftaroline resistance appeared to be mediated by other factors, possibly including mutation of the promoter. Our findings provide evidence that CRB has at least two PBP4-mediated resistance mechanisms.
耐甲氧西林金黄色葡萄球菌(MRSA)在全球范围内引起严重的社区获得性和医院获得性感染。MRSA 菌株对多种抗生素具有耐药性,包括经典的青霉素和头孢菌素类β-内酰胺类抗生素,使其难以治疗。尽管 MRSA 中的β-内酰胺耐药性归因于青霉素结合蛋白 2a(PBP2a,由 编码)的获得和活性,但最近观察到耐药性也可以由青霉素结合蛋白 4(PBP4)介导。以前,我们已经表明,在对 -阴性 COL 株进行连续传代后,广泛的β-内酰胺耐药性可能会产生 ,从而产生 CRB 株。该菌株在 中具有两个错义突变和 启动子中的突变,这两者在β-内酰胺耐药性中都起着重要作用。为了更好地了解 PBP4 在耐药性中的作用,我们在这里用与临床相关的β-内酰胺抗生素对其动力学和结构进行了表征。我们首次展示了与三种第三代β-内酰胺抗生素:头孢托罗、头孢卡品和萘夫西林结合的apo 和酰基酶中间复合物的 PBP4 晶体结构。同时,我们还对 CRB 株中存在的 PBP4 突变的结构和动力学效应进行了表征。这两个突变位于转肽酶活性位点裂缝内,根据药物的不同,它们似乎具有不同的作用。对于头孢托罗,错义突变使 值降低了 150 倍,减少了被抑制的 PBP4 的比例。然而,头孢卡品的耐药性似乎是由其他因素介导的,可能包括 启动子的突变。我们的研究结果提供了证据,表明 CRB 至少有两种由 PBP4 介导的耐药机制。