Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, USA.
mBio. 2024 Aug 14;15(8):e0121024. doi: 10.1128/mbio.01210-24. Epub 2024 Jul 19.
The high-level resistance to next-generation β-lactams frequently found in isolates lacking , which encodes the transpeptidase PBP2a traditionally associated with methicillin-resistant (MRSA), has remained incompletely understood for decades. A new study by Lai et al. found that the co-occurrence of mutations in and , which respectively cause increased PBP4-mediated cell wall crosslinking and elevated cyclic-di-AMP levels, produces synergistic β-lactam resistance rivaling that of PBP2a-producing MRSA (L.-Y. Lai, N. Satishkumar, S. Cardozo, V. Hemmadi, et al., mBio 15:e02889-23. 2024, https://doi.org/10.1128/mbio.02889-23). The combined mutations are sufficient to explain the high-level β-lactam resistance of some lacking strains, but the mechanism of synergy remains elusive and an avenue for further research. Importantly, the authors establish that co-occurrence of these mutations leads to antibiotic therapy failure in a infection model. These results underscore the need to consider this unique and novel β-lactam resistance mechanism during the clinical diagnosis of MRSA, rather than relying on as a diagnostic.
几十年来,人们对缺乏传统上与耐甲氧西林金黄色葡萄球菌 (MRSA) 相关的转肽酶 PBP2a 编码基因 的 株中经常发现的高水平耐下一代β-内酰胺类药物的机制仍不完全了解。Lai 等人的一项新研究发现,突变的共同发生分别导致 PBP4 介导的细胞壁交联增加和环二腺苷酸水平升高的 和 ,产生协同β-内酰胺类药物耐药性,可与产生 PBP2a 的 MRSA 相媲美 (L.-Y. Lai, N. Satishkumar, S. Cardozo, V. Hemmadi, 等人,mBio 15:e02889-23. 2024, https://doi.org/10.1128/mBio.02889-23)。这些联合突变足以解释一些缺乏的菌株高水平β-内酰胺类药物耐药性,但协同作用的机制仍难以捉摸,这是进一步研究的一个途径。重要的是,作者在 感染模型中建立了这些突变的共同发生导致抗生素治疗失败。这些结果强调了在 MRSA 的临床诊断中需要考虑这种独特而新颖的β-内酰胺类药物耐药机制,而不是仅仅依赖 作为诊断。