Department of Computer Engineering, Inha University, Incheon, 22212, South Korea.
BMC Genomics. 2018 Aug 13;19(Suppl 6):568. doi: 10.1186/s12864-018-4924-2.
Viral infection involves a large number of protein-protein interactions (PPIs) between virus and its host. These interactions range from the initial binding of viral coat proteins to host membrane receptor to the hijacking the host transcription machinery by viral proteins. Therefore, identifying PPIs between virus and its host helps understand the mechanism of viral infections and design antiviral drugs. Many computational methods have been developed to predict PPIs, but most of them are intended for PPIs within a species rather than PPIs across different species such as PPIs between virus and host.
In this study, we developed a prediction model of virus-host PPIs, which is applicable to new viruses and hosts. We tested the prediction model on independent datasets of virus-host PPIs, which were not used in training the model. Despite a low sequence similarity between proteins in training datasets and target proteins in test datasets, the prediction model showed a high performance comparable to the best performance of other methods for single virus-host PPIs.
Our method will be particularly useful to find PPIs between host and new viruses for which little information is available. The program and support data are available at http://bclab.inha.ac.kr/VirusHostPPI .
病毒感染涉及病毒与其宿主之间大量的蛋白质-蛋白质相互作用(PPIs)。这些相互作用范围从病毒外壳蛋白与宿主膜受体的初始结合到病毒蛋白劫持宿主转录机制。因此,识别病毒与其宿主之间的 PPIs 有助于了解病毒感染的机制并设计抗病毒药物。已经开发出许多用于预测 PPIs 的计算方法,但大多数方法都针对同一物种内的 PPIs,而不是跨不同物种(例如病毒与宿主之间的 PPIs)的 PPIs。
在这项研究中,我们开发了一种适用于新病毒和宿主的病毒-宿主 PPIs 预测模型。我们在未用于训练模型的病毒-宿主 PPIs 的独立数据集上测试了预测模型。尽管训练数据集中的蛋白质与测试数据集中的目标蛋白质之间的序列相似性较低,但预测模型表现出的性能与其他用于单个病毒-宿主 PPIs 的最佳方法相当。
我们的方法对于发现宿主与新病毒之间的 PPIs 特别有用,因为这些新病毒的信息很少。程序和支持数据可在 http://bclab.inha.ac.kr/VirusHostPPI 获得。