文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习方法与生物信息学分析发现了乙型肝炎病毒相关肝细胞重塑和肝细胞癌的关键基因组特征。

Machine Learning Approach and Bioinformatics Analysis Discovered Key Genomic Signatures for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma.

作者信息

Adugna Adane, Amare Gashaw Azanaw, Jemal Mohammed

机构信息

Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia.

Department of Biomedical Sciences, School of Medicine, Debre Markos University, Ethiopia.

出版信息

Cancer Inform. 2025 Apr 16;24:11769351251333847. doi: 10.1177/11769351251333847. eCollection 2025.


DOI:10.1177/11769351251333847
PMID:40291818
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12033511/
Abstract

Hepatitis B virus (HBV) causes liver cancer, which is the third most common cause of cancer-related death worldwide. Chronic inflammation via HBV in the host hepatocytes causes hepatocyte remodeling (hepatocyte transformation and immortalization) and hepatocellular carcinoma (HCC). Recognizing cancer stages accurately to optimize early screening and diagnosis is a primary concern in the outlook of HBV-induced hepatocyte remodeling and liver cancer. Genomic signatures play important roles in addressing this issue. Recently, machine learning (ML) models and bioinformatics analysis have become very important in discovering novel genomic signatures for the early diagnosis, treatment, and prognosis of HBV-induced hepatic cell remodeling and HCC. We discuss the recent literature on the ML approach and bioinformatics analysis revealed novel genomic signatures for diagnosing and forecasting HBV-associated hepatocyte remodeling and HCC. Various genomic signatures, including various microRNAs and their associated genes, long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs), have been discovered to be involved in the upregulation and downregulation of HBV-HCC. Moreover, these genetic biomarkers also affect different biological processes, such as proliferation, migration, circulation, assault, dissemination, antiapoptosis, mitogenesis, transformation, and angiogenesis in HBV-infected hepatocytes.

摘要

乙型肝炎病毒(HBV)可引发肝癌,肝癌是全球癌症相关死亡的第三大常见原因。宿主肝细胞中由HBV引起的慢性炎症会导致肝细胞重塑(肝细胞转化和永生化)以及肝细胞癌(HCC)。准确识别癌症阶段以优化早期筛查和诊断是HBV诱导的肝细胞重塑和肝癌研究中的首要关注点。基因组特征在解决这一问题中发挥着重要作用。近年来,机器学习(ML)模型和生物信息学分析在发现用于HBV诱导的肝细胞重塑和HCC早期诊断、治疗及预后的新型基因组特征方面变得非常重要。我们讨论了近期有关ML方法和生物信息学分析的文献,这些研究揭示了用于诊断和预测HBV相关肝细胞重塑和HCC的新型基因组特征。已发现多种基因组特征,包括各种微小RNA及其相关基因、长链非编码RNA(lncRNA)和小核仁RNA(snoRNA),参与了HBV-HCC的上调和下调过程。此外,这些遗传生物标志物还影响不同的生物学过程,如HBV感染肝细胞中的增殖、迁移、循环、侵袭、播散、抗凋亡、有丝分裂、转化和血管生成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/f890d96e4781/10.1177_11769351251333847-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/45e136b1b207/10.1177_11769351251333847-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/48835a2dde2f/10.1177_11769351251333847-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/f890d96e4781/10.1177_11769351251333847-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/45e136b1b207/10.1177_11769351251333847-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/48835a2dde2f/10.1177_11769351251333847-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/12033511/f890d96e4781/10.1177_11769351251333847-fig3.jpg

相似文献

[1]
Machine Learning Approach and Bioinformatics Analysis Discovered Key Genomic Signatures for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma.

Cancer Inform. 2025-4-16

[2]
Current Advancements in Serum Protein Biomarkers for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma.

Immun Inflamm Dis. 2025-4

[3]
Hepatitis B Virus DNA Integration and Clonal Expansion of Hepatocytes in the Chronically Infected Liver.

Viruses. 2021-1-30

[4]
Integrating bioinformatics and machine learning methods to analyze diagnostic biomarkers for HBV-induced hepatocellular carcinoma.

Diagn Pathol. 2024-8-2

[5]
Exploring new targets for the treatment of hepatitis-B virus and hepatitis-B virus-associated hepatocellular carcinoma: A new perspective in bioinformatics.

Medicine (Baltimore). 2021-8-20

[6]
Hepatitis B Virus-Encoded HBsAg Contributes to Hepatocarcinogenesis by Inducing the Oncogenic Long Noncoding RNA LINC00665 through the NF-κB Pathway.

Microbiol Spectr. 2022-10-26

[7]
Identification of long noncoding RNAs biomarkers in patients with hepatitis B virus-associated hepatocellular carcinoma.

Cancer Biomark. 2018

[8]
Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma.

Microb Pathog. 2019-1-3

[9]
lncRNA POLR2J4 Plays a Biomarker Role in Hepatitis B Virus-Related Hepatocellular Carcinoma Through Regulating miR-214-3p.

Turk J Gastroenterol. 2024-8-26

[10]
Hepatitis B-related hepatocellular carcinoma: classification and prognostic model based on programmed cell death genes.

Front Immunol. 2024

本文引用的文献

[1]
Multiple machine learning algorithms, validation of external clinical cohort and assessments of model gain effects will better serve cancer research on bioinformatic models.

Cancer Cell Int. 2024-12-23

[2]
Machine learning approach identifies inflammatory gene signature for predicting survival outcomes in hepatocellular carcinoma.

Sci Rep. 2024-12-5

[3]
Unveiling novel prognostic biomarkers and therapeutic targets for HBV-associated hepatocellular carcinoma through integrated bioinformatic analysis.

Medicine (Baltimore). 2024-10-25

[4]
Serum laminin γ2 monomer as a predictive biomarker for hepatocellular carcinoma in patients with chronic hepatitis B virus infection: a retrospective cohort study.

Sci Rep. 2024-10-25

[5]
ML-GAP: machine learning-enhanced genomic analysis pipeline using autoencoders and data augmentation.

Front Genet. 2024-9-25

[6]
as a potential prognostic biomarker in hepatocellular carcinoma linked to immune infiltration and ferroptosis.

Chin J Cancer Res. 2024-8-30

[7]
A machine learning model to predict liver-related outcomes after the functional cure of chronic hepatitis B.

J Hepatol. 2025-2

[8]
A Comprehensive Review of Bioinformatics Tools for Genomic Biomarker Discovery Driving Precision Oncology.

Genes (Basel). 2024-8-6

[9]
Artificial intelligence applied to 'omics data in liver disease: towards a personalised approach for diagnosis, prognosis and treatment.

Gut. 2025-1-17

[10]
Study of sex-biased differences in genomic profiles in East Asian hepatocellular carcinoma.

Discov Oncol. 2024-7-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索