Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, 61801.
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, Illinois, 61801.
J Comput Chem. 2018 Sep 30;39(25):2079-2102. doi: 10.1002/jcc.25520. Epub 2018 Oct 14.
Macromolecular and biomolecular folding landscapes typically contain high free energy barriers that impede efficient sampling of configurational space by standard molecular dynamics simulation. Biased sampling can artificially drive the simulation along prespecified collective variables (CVs), but success depends critically on the availability of good CVs associated with the important collective dynamical motions. Nonlinear machine learning techniques can identify such CVs but typically do not furnish an explicit relationship with the atomic coordinates necessary to perform biased sampling. In this work, we employ auto-associative artificial neural networks ("autoencoders") to learn nonlinear CVs that are explicit and differentiable functions of the atomic coordinates. Our approach offers substantial speedups in exploration of configurational space, and is distinguished from existing approaches by its capacity to simultaneously discover and directly accelerate along data-driven CVs. We demonstrate the approach in simulations of alanine dipeptide and Trp-cage, and have developed an open-source and freely available implementation within OpenMM. © 2018 Wiley Periodicals, Inc.
大分子和生物大分子折叠景观通常包含高自由能势垒,这阻碍了标准分子动力学模拟对构象空间的有效采样。有偏采样可以人为地驱动模拟沿着预定的集体变量(CVs)进行,但成功与否取决于是否存在与重要的集体动力学运动相关的良好 CVs。非线性机器学习技术可以识别这样的 CVs,但通常不能提供与进行有偏采样所需的原子坐标之间的显式关系。在这项工作中,我们使用自联想人工神经网络(“自动编码器”)来学习原子坐标的显式和可微的非线性 CVs。我们的方法在构象空间的探索中提供了实质性的加速,并且通过其能够同时发现和直接沿着数据驱动的 CVs 加速的能力而与现有方法区分开来。我们在丙氨酸二肽和 Trp-cage 的模拟中演示了该方法,并在 OpenMM 中开发了一个开源且免费提供的实现。