Shmilovich Kirill, Ferguson Andrew L
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
J Phys Chem A. 2023 Apr 20;127(15):3497-3517. doi: 10.1021/acs.jpca.3c00505. Epub 2023 Apr 10.
Molecular dynamics simulations of microscopic phenomena are limited by the short integration time steps which are required for numerical stability but which limit the practically achievable simulation time scales. Collective variable (CV) enhanced sampling techniques apply biases to predefined collective coordinates to promote barrier crossing, phase space exploration, and sampling of rare events. The efficacy of these techniques is contingent on the selection of good CVs correlated with the molecular motions governing the long-time dynamical evolution of the system. In this work, we introduce Girsanov Reweighting Enhanced Sampling Technique (GREST) as an adaptive sampling scheme that interleaves rounds of data-driven slow CV discovery and enhanced sampling along these coordinates. Since slow CVs are inherently dynamical quantities, a key ingredient in our approach is the use of both thermodynamic and dynamical Girsanov reweighting corrections for rigorous estimation of slow CVs from biased simulation data. We demonstrate our approach on a toy 1D 4-well potential, a simple biomolecular system alanine dipeptide, and the Trp-Leu-Ala-Leu-Leu (WLALL) pentapeptide. In each case GREST learns appropriate slow CVs and drives sampling of all thermally accessible metastable states starting from zero prior knowledge of the system. We make GREST accessible to the community via a publicly available open source Python package.
微观现象的分子动力学模拟受到短积分时间步长的限制,这些时间步长是数值稳定性所必需的,但限制了实际可实现的模拟时间尺度。集体变量(CV)增强采样技术对预定义的集体坐标施加偏差,以促进势垒穿越、相空间探索和罕见事件的采样。这些技术的有效性取决于与控制系统长期动力学演化的分子运动相关的良好CV的选择。在这项工作中,我们引入了吉尔萨诺夫重加权增强采样技术(GREST)作为一种自适应采样方案,该方案交错进行多轮数据驱动的慢CV发现,并沿这些坐标进行增强采样。由于慢CV本质上是动力学量,我们方法的一个关键要素是使用热力学和动力学吉尔萨诺夫重加权校正,以便从有偏模拟数据中严格估计慢CV。我们在一个一维四阱势的简单模型、一个简单的生物分子系统丙氨酸二肽以及色氨酸 - 亮氨酸 - 丙氨酸 - 亮氨酸 - 亮氨酸(WLALL)五肽上演示了我们的方法。在每种情况下,GREST都能学习到合适的慢CV,并从对系统的零先验知识开始驱动对所有热可及亚稳态的采样。我们通过一个公开可用的开源Python包,使社区能够使用GREST。