Randolph Timothy W, Ding Jimin, Kundu Madan G, Harezlak Jaroslaw
Fred Hutchinson Cancer Research Center, Biostatistics and Biomathematics, Seattle, WA 98109.
Washington University in Saint Louis, Department of Mathematics, Saint Louis, MO 63130.
J Chemom. 2017 Apr;31(4). doi: 10.1002/cem.2850. Epub 2016 Oct 28.
Tikhonov regularization was proposed for multivariate calibration by Andries and Kalivas [1]. We use this framework for modeling the statistical association between spectroscopy data and a scalar outcome. In both the calibration and regression settings this regularization process has advantages over methods of spectral pre-processing and dimension-reduction approaches such as feature extraction or principal component regression. We propose an extension of this penalized regression framework by adaptively refining the penalty term to optimally focus the regularization process. We illustrate the approach using simulated spectra and compare it with other penalized regression models and with a two-step method that first pre-processes the spectra then fits a dimension-reduced model using the processed data. The methods are also applied to magnetic resonance spectroscopy data to identify brain metabolites that are associated with cognitive function.
蒂霍诺夫正则化由安德烈斯和卡利瓦斯[1]提出用于多元校准。我们使用这个框架来对光谱数据和标量结果之间的统计关联进行建模。在校准和回归设置中,这种正则化过程比光谱预处理方法和降维方法(如特征提取或主成分回归)具有优势。我们通过自适应地细化惩罚项以最优地聚焦正则化过程,提出了这种惩罚回归框架的一种扩展。我们使用模拟光谱说明了该方法,并将其与其他惩罚回归模型以及一种两步法进行比较,该两步法首先对光谱进行预处理,然后使用处理后的数据拟合一个降维模型。这些方法还应用于磁共振波谱数据,以识别与认知功能相关的脑代谢物。