Suppr超能文献

统计回归模型中广义蒂霍诺夫正则化的自适应惩罚及其在光谱数据中的应用

Adaptive penalties for generalized Tikhonov regularization in statistical regression models with application to spectroscopy data.

作者信息

Randolph Timothy W, Ding Jimin, Kundu Madan G, Harezlak Jaroslaw

机构信息

Fred Hutchinson Cancer Research Center, Biostatistics and Biomathematics, Seattle, WA 98109.

Washington University in Saint Louis, Department of Mathematics, Saint Louis, MO 63130.

出版信息

J Chemom. 2017 Apr;31(4). doi: 10.1002/cem.2850. Epub 2016 Oct 28.

Abstract

Tikhonov regularization was proposed for multivariate calibration by Andries and Kalivas [1]. We use this framework for modeling the statistical association between spectroscopy data and a scalar outcome. In both the calibration and regression settings this regularization process has advantages over methods of spectral pre-processing and dimension-reduction approaches such as feature extraction or principal component regression. We propose an extension of this penalized regression framework by adaptively refining the penalty term to optimally focus the regularization process. We illustrate the approach using simulated spectra and compare it with other penalized regression models and with a two-step method that first pre-processes the spectra then fits a dimension-reduced model using the processed data. The methods are also applied to magnetic resonance spectroscopy data to identify brain metabolites that are associated with cognitive function.

摘要

蒂霍诺夫正则化由安德烈斯和卡利瓦斯[1]提出用于多元校准。我们使用这个框架来对光谱数据和标量结果之间的统计关联进行建模。在校准和回归设置中,这种正则化过程比光谱预处理方法和降维方法(如特征提取或主成分回归)具有优势。我们通过自适应地细化惩罚项以最优地聚焦正则化过程,提出了这种惩罚回归框架的一种扩展。我们使用模拟光谱说明了该方法,并将其与其他惩罚回归模型以及一种两步法进行比较,该两步法首先对光谱进行预处理,然后使用处理后的数据拟合一个降维模型。这些方法还应用于磁共振波谱数据,以识别与认知功能相关的脑代谢物。

相似文献

2
Brain connectivity-informed regularization methods for regression.用于回归的脑连接性信息正则化方法。
Stat Biosci. 2019 Apr;11(1):47-90. doi: 10.1007/s12561-017-9208-x. Epub 2017 Dec 6.
6
General regularization framework for DEER spectroscopy.通用的 DEER 光谱学正则化框架。
J Magn Reson. 2019 Mar;300:28-40. doi: 10.1016/j.jmr.2019.01.008. Epub 2019 Jan 19.
8
Optimal Tikhonov regularization for DEER spectroscopy.用于双电子-电子共振光谱学的最优蒂霍诺夫正则化
J Magn Reson. 2018 Mar;288:58-68. doi: 10.1016/j.jmr.2018.01.021. Epub 2018 Feb 1.
9
Theory of adaptive SVD regularization for deep neural networks.自适应 SVD 正则化的深度神经网络理论。
Neural Netw. 2020 Aug;128:33-46. doi: 10.1016/j.neunet.2020.04.021. Epub 2020 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验