Suppr超能文献

用于双电子-电子共振光谱学的最优蒂霍诺夫正则化

Optimal Tikhonov regularization for DEER spectroscopy.

作者信息

Edwards Thomas H, Stoll Stefan

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98103, United States.

出版信息

J Magn Reson. 2018 Mar;288:58-68. doi: 10.1016/j.jmr.2018.01.021. Epub 2018 Feb 1.

Abstract

Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α, and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation method with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.

摘要

蒂霍诺夫正则化是从实验双电子-电子共振(DEER)光谱数据中提取距离分布最常用的方法。该方法需要选择一个正则化参数α和一个正则化算子L。我们使用超过五十万个合成噪声DEER迹线的测试集,分析了大量α选择方法和几种正则化算子的性能。这些迹线是根据对T4溶菌酶蛋白质晶体结构进行自旋标记MTSSL的计算机双标记获得的距离分布生成的。我们根据从噪声时间迹线中恢复模型距离分布的能力来比较这些方法和算子。结果表明,几种α选择方法表现良好,其中包括赤池信息准则以及使用一阶或二阶导数算子的广义交叉验证方法。它们的表现明显优于目前使用的L曲线方法。

相似文献

1
Optimal Tikhonov regularization for DEER spectroscopy.用于双电子-电子共振光谱学的最优蒂霍诺夫正则化
J Magn Reson. 2018 Mar;288:58-68. doi: 10.1016/j.jmr.2018.01.021. Epub 2018 Feb 1.
2
General regularization framework for DEER spectroscopy.通用的 DEER 光谱学正则化框架。
J Magn Reson. 2019 Mar;300:28-40. doi: 10.1016/j.jmr.2019.01.008. Epub 2019 Jan 19.
8
DEER Data Analysis Software: A Comparative Guide.DEER数据分析软件:比较指南
Front Mol Biosci. 2022 Jun 1;9:915167. doi: 10.3389/fmolb.2022.915167. eCollection 2022.

引用本文的文献

3
Rapid Analysis of DEER Signals Including Short Distances.包括短距离在内的双电子电子共振信号的快速分析
J Phys Chem Lett. 2025 Jan 9;16(1):38-44. doi: 10.1021/acs.jpclett.4c03245. Epub 2024 Dec 18.
4
Protein Modeling with DEER Spectroscopy.利用双电子-电子共振光谱进行蛋白质建模。
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.

本文引用的文献

2
MMM: A toolbox for integrative structure modeling.MMM:用于综合结构建模的工具箱。
Protein Sci. 2018 Jan;27(1):76-85. doi: 10.1002/pro.3269. Epub 2017 Sep 4.
9
Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants.T4 溶菌酶腔突变体中配体结合的构象选择和适应。
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4306-15. doi: 10.1073/pnas.1318754110. Epub 2013 Oct 28.
10
The global analysis of DEER data.全局分析 DEER 数据。
J Magn Reson. 2012 May;218:93-104. doi: 10.1016/j.jmr.2012.03.006. Epub 2012 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验